Skip to content

Latest commit

 

History

History
55 lines (38 loc) · 4.7 KB

notes-1-3-CN.md

File metadata and controls

55 lines (38 loc) · 4.7 KB

第三课 data blocks, 多标签分类,图片像素隔离

综述

本节课内容很多!一开始我们要看一个非常有趣的数据集:Planet's Understanding the Amazon from Space. 为了让数据能“喂给”模型,我们需要用fastai强大且独特的data block API工具来处理数据。在后续的课时中,我们也会反复使用这个API,数量掌握它能让你成为真正的fastai超级明星!当你完成本节课,如果你准备好学习更多data block API,可以看看这篇很棒的文章Finding Data Block Nirvana, 作者是 Wayde Gilliam.

planet数据集一个重要特征是多标签multi-label。也就是说:每张卫星图片可以包含多个标签/标注,而之前的数据集我们面对的是一张图对应一个标注。我们会学到需要做哪些调整来处理这个多标签问题。

接下来,我们将学习image segmentation 图片像素隔离,也就是对图片中每一个像素做类别标注,从而知道哪个像素对应哪个物体。我们会对前期所学的技巧做一些调整。fastai将图片像素隔离建模和解读做得跟图片分类一样简单,因此不会有太多需要调整的地方。

我们将用著名的Camvid数据集来做图片像素隔离。后续课时中,还会回头学习更多技巧。我们最终Camvid模型对比所能找到的已发表的最优学术水平,将进一步大幅降低错误率。

如果你的目标变量是连续的,而非类别,怎么办?我们将用下一个数据集keypoint来回答,我们将构建一个模型做高精度的脸部关键点预测。

资源

课程资源

其他资源

深入阅读


编辑此页面.