-
Notifications
You must be signed in to change notification settings - Fork 0
/
PRS_Calculator.py
433 lines (337 loc) · 16.4 KB
/
PRS_Calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#####======================================== Imports ========================================#####
#built-in
import os
import gc
import sys
import gzip
import time
import math
import numpy as np
import argparse
import concurrent.futures
#installed
import allel
import pandas as pd
from psutil import virtual_memory
#####======================================== Input Arguments ========================================#####
#arguments
def parse_args():
parser = argparse.ArgumentParser(description='Lets get some PRS done~')
parser.add_argument('--vcf', type=str, nargs='+', required=True, help='file path to directory containing vcf.gz files (can be multiple but number of files should be some multiple of 22)')
parser.add_argument('--suffix', type=str, required=True, help='common suffix of all vcf files')
parser.add_argument('--PRS', type=str, required=True, help='file path to polygenic risk scoring file (takes a csv with ONE header line)')
parser.add_argument('--CHR', type=str, required=True, help='column header of chromosome number')
parser.add_argument('--BP', type=str, required=True, help='column header of base pair')
parser.add_argument('--EFFECT', type=str, required=True, help='column header of effect allele')
parser.add_argument('--REFERENCE', type=str, required=True, help='column header of reference allele')
parser.add_argument('--WEIGHT', type=str, required=True, help='column header of effect size or weight of each SNP')
parser.add_argument('--ncore', type=int, default=os.cpu_count(), help='number of cores (will use all if not specified)')
parser.add_argument('--nthread', type=int, default=1, help='number of threads per parallel process (increase if CPU utilization is low)')
parser.add_argument('--out', type=str, required=False, help='output file name (will be a .csv file)')
parser.add_argument('--explicit', default=False,type=bool, help='long logging and debug information')
return parser.parse_args()
def display_args(args):
variables = vars(args)
print('\n\n\nInput Options:')
for argument in variables:
print(f' --{argument} {variables[argument]}')
#####======================================== Grabbing VCF File Paths ========================================#####
# grabbing chromosome identifier from file path
def chromosome_label(path,prefix):
path = list((path.split('/')[-1]).split('.')[:-2])
index = len(prefix)
for item in path:
if item[0:index] == prefix:
if item[len(prefix):].isnumeric():
return (int(item[index:]))
else:
return None
# generate list of all compressed vcf files
def get_vcf_file_path_list(vcf_path,suffix):
output = []
for i in range(0,22):
output.append([])
vcf_file_path_list = []
# grabbing all compressed .vcf.gz files and their directory
for path in vcf_path:
for filename in os.listdir(path):
if filename.endswith(suffix) and path[-1] == "/":
vcf_file_path_list.append(path + filename)
elif filename.endswith(suffix):
vcf_file_path_list.append(path + "/" + filename)
# identifying chromosome number prefix
vcf_file_path_list.sort()
mask = (vcf_file_path_list[0].split('/')[-1]).split('.')[:-2]
for path in vcf_file_path_list[1:22]:
path = (path.split('/')[-1]).split('.')[:-2]
for index in range(0,len(mask)):
if mask[index] == path[index]:
mask[index] = 0
# removing common elements
removal_list = []
for item in mask:
if item == 0:
removal_list.append(item)
for item in removal_list:
mask.remove(item)
prefix = mask[0][:-1]
# removing non-chr#s 1-22
removal_list = []
for path in vcf_file_path_list:
if chromosome_label(path,prefix) == None:
removal_list.append(path)
for path in removal_list:
vcf_file_path_list.remove(path)
# sorting all obtained paths
vcf_file_path_list.sort()
# grouping obtained vcf file paths
for path in vcf_file_path_list:
output[chromosome_label(path,prefix)-1].append(path)
return output
#####======================================== PRS Grabber ========================================#####
def get_PRS_targets(path,CHR,BP,EFFECT,REFERENCE,WEIGHT):
# generating a blank list
PRS_targets = []
# opening file
df = pd.read_csv(path)
#reading into array
for index, row in df.iterrows():
PRS_targets.append((row[CHR], row[BP],row[EFFECT],row[REFERENCE],row[WEIGHT]))
return PRS_targets
#####======================================== Subject ID List ========================================#####
# obtaining subject ID list
def get_ID_library(vcf_file_path):
ID_library = {}
for path in vcf_file_path:
# pulling relevant line from vcf file header
with gzip.open(path,'rt') as file:
for line in file:
line = list(line[:-1].split('\t'))
if line[0] == '#CHROM':
index = 1
for item in line:
if item == 'FORMAT':
break
else:
index += 1
IDs = line[index:]
break
# converting to dictionary for easier processing
for ID in IDs:
ID_library[ID] = float(0)
return ID_library
#####======================================== Parallel Tasks ========================================#####
class get_vcf_line(object):
def __init__(self, vcf_file_path, chromosome_number, position):
self.full_data = allel.read_vcf(vcf_file_path,fields=['variants/ALT','variants/REF','calldata/GT','samples'],region=f'{chromosome_number}:{position}-{position}')
def __enter__(self):
return self.full_data
def __exit__(self ,type, value, traceback):
if type == dict:
self.full_data.clear()
del self.full_data
gc.collect()
def chunk_PRS_targets(PRS_targets,chunksize):
# generating empty lists
PRS_target_chunks = []
chunk = []
# chunking the lists
loopcount = 1
for target in PRS_targets:
chunk.append(target)
if loopcount % chunksize == 0:
PRS_target_chunks.append(chunk)
chunk = []
loopcount += 1
# cleaning up last chunk
PRS_target_chunks.append(chunk)
return PRS_target_chunks
def get_partial_PRS(vcf_file_paths,PRS_targets,ID_library,explicit):
# tracking SNP casess
cases = [[0 for foo in range(0,22)] for foo in range(0,4)]
# iterating over portion of PRS
for SNP_info in PRS_targets:
# grabbing line from vcf file
for path in vcf_file_paths[int(SNP_info[0])-1]:
with get_vcf_line(path,SNP_info[0],SNP_info[1]) as line:
if line == None:
cases[0][SNP_info[0]-1] += 1
if explicit:
print(f'position {SNP_info[1]} on CHR {SNP_info[0]} is missing in\n{path}')
elif line['variants/ALT'][0][0] == SNP_info[2] and line['variants/REF'][0] == SNP_info[3]:
cases[1][SNP_info[0]-1] += 1
# summing in case of correct effect/reference
index = 0
for ID in line['samples']:
ID_library[ID] = float(ID_library[ID] + float(SNP_info[4]) * sum(line['calldata/GT'][0][index]))
index += 1
elif line['variants/ALT'][0][0] == SNP_info[3] and line['variants/REF'][0] == SNP_info[2]:
cases[2][SNP_info[0]-1] += 1
if explicit:
print(f'position {SNP_info[1]} on CHR {SNP_info[0]} has reversed alleles in\n{path}')
# summing in case of reversed effect/reference
index = 0
for ID in line['samples']:
ID_library[ID] = float(ID_library[ID] + float(SNP_info[4]) * (2-sum(line['calldata/GT'][0][index])))
index += 1
else:
cases[3][SNP_info[0]-1] += 1
if explicit:
print(f'position {SNP_info[1]} on CHR {SNP_info[0]} has mismatched alleles in\n{path}')
# accounting for multi-file systems
file_num = len(vcf_file_paths[0])
if ( sum( sum(case%file_num for case in cases[index]) for index in range(0,4)) == 0):
for index in range(0,4):
cases[index] = [int(case/file_num) for case in cases[index]]
return [ID_library,cases]
def task(vcf_file_path,PRS_targets,ID_library,chunk_number,total_chunks,threads,explicit):
#print(f'Chunk {chunk_number} of {total_chunks} started')
cases = [[0 for foo in range(0,22)] for foo in range(0,4)]
PRS_target_chunks = chunk_PRS_targets(PRS_targets,threads)
for PRS_targets in PRS_target_chunks:
# launching threads
with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor:
future_list = []
chunk_counter = 1
total_chunks = len(PRS_targets)
for PRS_target in PRS_targets:
future_list.append(executor.submit(get_partial_PRS,vcf_file_path,[PRS_target],ID_library,explicit))
chunk_counter += 1
# extracting threaded calculation results and summing them
for future in future_list:
for key in ID_library:
ID_library[key] = ID_library[key] + future.result()[0][key]
# extracting threaded calculation cases
for future in future_list:
for x in range(0,4):
for y in range(0,22):
cases[x][y] += future.result()[1][x][y]
# cleanup
future_list = None
gc.collect()
#print(f'Chunk {chunk_number} of {total_chunks} completed')
return [ID_library,cases]
#####======================================== Output ========================================#####
def get_output_name(prefix,suffix,vcf_file_paths,PRS_file_path):
# convert paths to lists of strings of file name
VCF_identifier = list(vcf_file_paths[0][len(prefix):-1*len(suffix)].split('.'))
# identifies incongruities between file names and replaces with None
if len(vcf_file_paths) > 1:
for path in vcf_file_paths[1:]:
split_path = list(path[len(prefix):-1*len(suffix)].split('.'))
for index in range(0,len(VCF_identifier)):
# removes items that are not in common between names
if VCF_identifier[index] != split_path[index]:
VCF_identifier[index] = 0
# removing None items and chr#
remove_list = []
for item in VCF_identifier:
if item == 0:
remove_list.append(item)
elif item[0:3] == 'chr':
remove_list.append(item)
for item in remove_list:
VCF_identifier.remove(item)
VCF_identifier = '.'.join(VCF_identifier)
# final checks just in case...
if VCF_identifier[0] == '/':
VCF_identifier = VCF_identifier[1:]
PRS_identifier = '.' + '.'.join(list((PRS_file_path.split('/')[-1]).split('.')[:-1])) + '_score'
return VCF_identifier + PRS_identifier + '.csv'
def write_output(ID_library,out_name):
# opening file to write to
try:
output_file = open(out_name,'x')
except:
output_file = open(out_name,'w')
# writing to file: header then data
output_file.write('ID,Score\n')
for key in ID_library:
output_file.write(f'{key},{ID_library[key]}\n')
#------------------------------------------------------------------------------------------------------#
#####======================================== Main Program ========================================#####
#------------------------------------------------------------------------------------------------------#
def main():
#======================================== Taking Inputs (Preparation)
# setting up input arguments
args = parse_args()
display_args(args)
# initiating timer
tic = time.time()
# grabbing vcf file names in vcf file directory
vcf_file_path_list = get_vcf_file_path_list(args.vcf,args.suffix)
# displaying list of vcf files
print('\n\n\nObtained list of vcf files:')
for paths in vcf_file_path_list:
for path in paths:
print(path)
# processing PRS file to obtain list of SNPs to target
raw_PRS_targets = get_PRS_targets(args.PRS,args.CHR,args.BP,args.EFFECT,args.REFERENCE,args.WEIGHT)
SNP_count = len(raw_PRS_targets)
SNP_size = sys.getsizeof(raw_PRS_targets)
print(f'\n\n\nGathered [{SNP_count} total SNPs from PRS file]')
print(f'SNP list uses {SNP_size} Bytes')
# obtaining list of subject IDs
ID_library = get_ID_library(vcf_file_path_list[0])
ID_count = len(ID_library)
ID_size = sys.getsizeof(ID_library)
print(f'\nGathered {ID_count} Subject IDs into ID library')
print(f'ID library uses {ID_size} Bytes')
# generating chunks of PRS_targets
PRS_target_chunks = chunk_PRS_targets(raw_PRS_targets,math.ceil(len(raw_PRS_targets)/args.ncore))
print('\nPRS targets Chunked for parallel processing')
del raw_PRS_targets
# time check
toc = time.time()
print(f"\nPreparations completed in {toc - tic:0.4f} seconds")
#======================================== PRS Calculation
# multithreading over chunks of PRS targets
with concurrent.futures.ProcessPoolExecutor(max_workers=args.ncore) as executor:
future_list = []
chunk_counter = 1
total_chunks = len(PRS_target_chunks)
for PRS_targets in PRS_target_chunks:
future_list.append( executor.submit( task, vcf_file_path_list, PRS_targets, ID_library, chunk_counter, total_chunks, args.nthread, args.explicit ) )
chunk_counter += 1
toc = time.time()
print(f'\nValue retrieval from VCF completed in {toc - tic:0.4f} seconds')
#======================================== Merging Multiple Outputs
# extracting parallel calculation results and summing them
PRS_ID_library_list = []
for future in future_list:
for key in ID_library:
ID_library[key] = ID_library[key] + future.result()[0][key]
# extracting parallel calculation cases
cases = [[0 for foo in range(0,22)] for foo in range(0,4)]
for future in future_list:
for x in range(0,4):
for y in range(0,22):
cases[x][y] += future.result()[1][x][y]
#======================================== Displaying & Generating Results
# displaying number of cases separated by chromosome:
print('\nThese issues came up with the SNPs or Alleles:')
for chromosome in range(1,23):
print(f'\nChr{chromosome}:{" "*(3-len(str(chromosome)))}{cases[0][chromosome-1]} missing SNPs\n{" "*7}{cases[1][chromosome-1]} matched alleles\n{" "*7}{cases[2][chromosome-1]} reversed alleles\n{" "*7}{cases[3][chromosome-1]} mismatched alleles')
# totals
print(f'\nTotal: {sum(cases[0])} missing SNPs\n{" "*7}{sum(cases[1])} matched alleles\n{" "*7}{sum(cases[2])} reversed alleles\n{" "*7}{sum(cases[3])} mismatched alleles')
# summary of used & excluded
snps_used = (sum(cases[1])+sum(cases[2]))
snps_excluded = (sum(cases[0])+sum(cases[3]))
print(f'\nUsed {round(100*snps_used/SNP_count,3)}% of the SNPs ({snps_used}/{SNP_count})')
print(f'\nExcluded {round(100*snps_excluded/SNP_count,3)}% of the SNPs ({snps_excluded}/{SNP_count})')
# generating output file name
if args.out == None:
out_name = get_output_name(args.vcf[0],'.vcf.gz',vcf_file_path_list[0],args.PRS)
else:
out_name = args.out + '.score.csv'
# writing output
print('\nWriting output...')
write_output(ID_library,out_name)
print(f'Results written to {out_name}\n')
# closing timer and collecting result
toc = time.time()
print(f"Completed PRS Calculation in {toc - tic:0.4f} seconds")
#####======================================== Initiation ========================================#####
if __name__ == '__main__':
# initiating main program
main()