forked from asadoughi/stat-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9.R
35 lines (28 loc) · 1.1 KB
/
9.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
## Online course quiz question: 9.R
## Explanation: Logistic regression is similar to SVM with a linear kernel.
library(MASS)
svm_error <- function() {
# 1) generate a random training sample to train on + fit
# build training set
x0 = mvrnorm(50,rep(0,10),diag(10))
x1 = mvrnorm(50,rep(c(1,0),c(5,5)),diag(10))
train = rbind(x0,x1)
classes = rep(c(0,1),c(50,50))
dat=data.frame(train,classes=as.factor(classes))
# fit
# svmfit=svm(classes~.,data=dat,kernel="linear")
svmfit = glm(classes~., data=dat, family="binomial")
# 2) evaluate the number of mistakes we make on a large test set = 1000 samples
test_x0 = mvrnorm(500,rep(0,10),diag(10))
test_x1 = mvrnorm(500,rep(c(1,0),c(5,5)),diag(10))
test = rbind(test_x0,test_x1)
test_classes = rep(c(0,1),c(500,500))
test_dat = data.frame(test,test_classes=as.factor(test_classes))
fit = predict(svmfit,test_dat)
fit = ifelse(fit < 0.5, 0, 1)
error = sum(fit != test_dat$test_classes)/1000
return(error)
}
# 3) repeat (1-2) many times and averaging the error rate for each trial
errors = replicate(1000, svm_error())
print(mean(errors))