-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding.py
48 lines (36 loc) · 1.34 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import openai
import numpy as np # standard math module for python
from pprint import pprint
def open_file(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
def gpt3_embedding(content, engine='text-similarity-babbage-001'):
content = content.encode(encoding='ASCII',errors='ignore').decode()
response = openai.Embedding.create(input=content,engine=engine)
vector = response['data'][0]['embedding'] # this is a normal list
return vector
def similarity(v1, v2): # return dot product of two vectors
return np.dot(v1, v2)
openai.api_key = open_file('openaiapikey.txt')
def match_class(vector, classes):
results = list()
for c in classes:
score = similarity(vector, c['vector'])
info = {'category': c['category'], 'score': score}
results.append(info)
return results
if __name__ == '__main__':
categories = ['plant', 'reptile', 'mammal', 'fish', 'bird', 'pet', 'wild animal']
classes = list()
for c in categories:
vector = gpt3_embedding(c)
info = {'category': c, 'vector': vector}
classes.append(info)
#print(classes)
#exit(0)
while True:
a = input('Enter a lifeform here: ')
vector = gpt3_embedding(a)
#print(a, vector)
result = match_class(vector, classes)
pprint(result)