-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathai.py
253 lines (184 loc) · 8.95 KB
/
ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from controller import *
import random
from keras.optimizers import Adam
from keras.models import Sequential, load_model
from keras.layers.core import Dense, Dropout
from keras.utils.np_utils import to_categorical
import collections
from pygame import gfxdraw
import pygame
import numpy as np
import network_visualiser
MODEL_FILEPATH = "model.h5"
class CellItemType(enum.Enum):
WALL = -1
EMPTY = 0
BODY = 1
HEAD = 2
FRUIT = 4
def __int__(self):
return self.value
class MemoryItem:
def __init__(self, state, last_decision, reward, next_state, end):
self.state = state
self.last_decision = last_decision
self.reward = reward
self.next_state = next_state
self.end = end
class AIController(Controller):
player = None
game = None
neural_network = None
learning_rate = 0.0002
discount = 0.6 # 0.6 is the best
epsilon = 0.25
epsilon_decay_linear = 1/200
memory_size = 2000
replay_size = 500
memory = collections.deque(maxlen=memory_size)
first_layer = 36
second_layer = 36
third_layer = 36
train_flag = True
def init(self, player, game):
self.player = player
self.game = game
self.reward = 0
self.score = 0
if self.train_flag:
self.epsilon -= self.epsilon_decay_linear
self.player.positions[0].x = 240
self.player.positions[0].y = 240
self.game.fruit.position.x = 200
self.game.fruit.position.y = 200
self.player._set_move(Move.RIGHT)
else:
self.epsilon = 0
self.last_state = self.get_snake_vision()
self.last_decision = None
if not self.neural_network:
if self.train_flag:
self.create_network()
else:
self.neural_network = load_model(MODEL_FILEPATH)
self.replay()
def display_controller_gui(self):
network_visualiser.render_network(self.game._display_surf, self.game.board_rect.right + 140, self.neural_network, self.last_decision, self.last_state)
def save_to_memory(self, state, decision, reward, next_state, end):
self.memory.append(MemoryItem(state, decision, reward, next_state, end))
def get_input_size(self):
return len(self.last_state)
def scan(self, board, start_pos, itemType, direction):
i = 1
while True:
x = start_pos.x + i * self.player.step * direction[0]
y = start_pos.y + i * self.player.step * direction[1]
if x < self.get_min_x() or x >= self.get_max_x() or y < self.get_min_y() or y >= self.get_max_y():
if itemType == CellItemType.WALL:
return 1 / (start_pos.distance(Position(x, y)) / self.player.step)
break
curr_idx = self.coordinates_to_board_index(x, y)
if board[curr_idx] == int(itemType):
return 1 / (start_pos.distance(Position(x, y)) / self.player.step)
i += 1
return 0
def get_snake_vision(self):
if self.game.is_end():
return np.asarray([1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0])
board = self.board_state_to_list()
directions = [(0, -1), (1, -1), (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1)] # up, up-right, right...
directions_for_move = None
if self.player.last_move == Move.UP:
directions_for_move = directions[-3:] + directions[:4]
elif self.player.last_move == Move.RIGHT:
directions_for_move = directions[-1:] + directions[:6]
elif self.player.last_move == Move.DOWN:
directions_for_move = directions[1:]
elif self.player.last_move == Move.LEFT:
directions_for_move = directions[3:] + directions[:2]
vision = []
for cell in (CellItemType.WALL, CellItemType.BODY, CellItemType.FRUIT):
for direction in directions_for_move:
vision.append(self.scan(board, self.player.positions[0], cell, direction))
return np.asarray(vision)
def make_move(self):
self.last_state = self.get_snake_vision()
if random.random() < self.epsilon:
self.last_decision = to_categorical(random.randint(0, 2), num_classes=3)
else:
prediction = self.neural_network.predict(self.last_state.reshape((1, self.get_input_size())))
self.last_decision = to_categorical(np.argmax(prediction[0]), num_classes=3)
if self.last_decision[0]: # left
self.player.turn_left()
elif self.last_decision[1]: # right
self.player.turn_right()
elif self.last_decision[2]: # forward
pass
def set_reward(self):
self.reward = 0
if self.player.get_score() > self.score:
self.score = self.player.get_score()
self.reward = 100
elif self.game.is_end():
self.reward = -100
def replay(self):
if len(self.memory) > self.replay_size:
curr_replay = random.sample(self.memory, self.replay_size)
else:
curr_replay = self.memory
for item in curr_replay:
reward = item.reward
if not item.end:
reward += self.discount * np.amax(self.neural_network.predict(item.next_state.reshape((1, self.get_input_size())))[0])
target_f = self.neural_network.predict(item.state.reshape((1, self.get_input_size())))
target_f[0][np.argmax(item.last_decision)] = reward
self.neural_network.fit(item.state.reshape((1, self.get_input_size())), target_f, epochs=1, verbose=0)
def update_state(self):
if self.train_flag:
self.set_reward()
if not self.game.is_end():
self.reward += self.discount * np.amax(self.neural_network.predict(self.get_snake_vision().reshape((1, self.get_input_size())))[0])
target_f = self.neural_network.predict(self.last_state.reshape((1, self.get_input_size())))
target_f[0][np.argmax(self.last_decision)] = self.reward
self.neural_network.fit(self.last_state.reshape((1, self.get_input_size())), target_f, epochs=1, verbose=0)
self.save_to_memory(self.last_state, self.last_decision, self.reward, self.get_snake_vision(), self.game.is_end())
def get_board_width(self):
return (self.game.board_rect.right - self.game.board_rect.left) / self.player.step
def get_board_height(self):
return (self.game.board_rect.bottom - self.game.board_rect.top) / self.player.step
def get_min_x(self):
return self.game.board_rect.left
def get_min_y(self):
return self.game.board_rect.top
def get_max_x(self):
return self.game.board_rect.right
def get_max_y(self):
return self.game.board_rect.bottom
def coordinates_to_board_index(self, x, y):
tmp_x = (x - self.get_min_x()) / self.player.step
tmp_y = (y - self.get_min_y()) / self.player.step
width = self.get_board_width()
return int(tmp_y * width + tmp_x)
def board_state_to_list(self):
board = []
for row in range(self.game.board_rect.top, self.game.board_rect.bottom, self.player.step):
for col in range(self.game.board_rect.left, self.game.board_rect.right, self.player.step):
board.append(CellItemType.EMPTY.value)
board[self.coordinates_to_board_index(self.game.fruit.position.x, self.game.fruit.position.y)] = CellItemType.FRUIT.value
for pos in self.player.positions:
board[self.coordinates_to_board_index(pos.x, pos.y)] = CellItemType.BODY.value
snake_head = self.player.positions[0]
board[self.coordinates_to_board_index(snake_head.x, snake_head.y)] = CellItemType.HEAD.value
return np.asarray(board)
def create_network(self):
self.neural_network = Sequential()
self.neural_network.add(Dense(units=self.get_input_size(), activation='relu', input_dim=self.get_input_size()))
self.neural_network.add(Dense(units=self.first_layer, activation='relu'))
self.neural_network.add(Dense(units=self.second_layer, activation='relu'))
self.neural_network.add(Dense(units=self.third_layer, activation='relu'))
self.neural_network.add(Dense(units=3, activation='softmax'))
opt = Adam(self.learning_rate)
self.neural_network.compile(loss='mse', optimizer=opt)
self.neural_network.summary()