diff --git a/10_Deleting/Wine/Exercises.ipynb b/10_Deleting/Wine/Exercises.ipynb
index 09cc35c57..9bde6e972 100644
--- a/10_Deleting/Wine/Exercises.ipynb
+++ b/10_Deleting/Wine/Exercises.ipynb
@@ -176,7 +176,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 11. Set the rows of the random numbers in the column"
+ "### Step 11. Use random numbers you generated as an index and assign NaN value to each of cell."
]
},
{
@@ -208,7 +208,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 14. Print only the non-null values in alcohol"
+ "### Step 13. Delete the rows that contain missing values"
]
},
{
@@ -224,7 +224,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 13. Delete the rows that contain missing values"
+ "### Step 14. Print only the non-null values in alcohol"
]
},
{
@@ -236,6 +236,15 @@
"outputs": [],
"source": []
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -271,7 +280,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 2",
+ "display_name": "Python [default]",
"language": "python",
"name": "python2"
},
@@ -285,7 +294,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
- "version": "2.7.11"
+ "version": "2.7.12"
}
},
"nbformat": 4,
diff --git a/10_Deleting/Wine/Exercises_code_and_solutions.ipynb b/10_Deleting/Wine/Exercises_code_and_solutions.ipynb
index 188d7c8aa..74c5373c6 100644
--- a/10_Deleting/Wine/Exercises_code_and_solutions.ipynb
+++ b/10_Deleting/Wine/Exercises_code_and_solutions.ipynb
@@ -21,7 +21,7 @@
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 2,
"metadata": {
"collapsed": false
},
@@ -47,7 +47,7 @@
},
{
"cell_type": "code",
- "execution_count": 86,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -182,7 +182,7 @@
"4 1450 "
]
},
- "execution_count": 86,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -203,7 +203,7 @@
},
{
"cell_type": "code",
- "execution_count": 87,
+ "execution_count": 4,
"metadata": {
"collapsed": false
},
@@ -289,7 +289,7 @@
"4 14.20 1.76 15.2 112 3.39 1.97 6.75"
]
},
- "execution_count": 87,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -318,7 +318,7 @@
},
{
"cell_type": "code",
- "execution_count": 88,
+ "execution_count": 5,
"metadata": {
"collapsed": false
},
@@ -411,7 +411,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 88,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -430,7 +430,7 @@
},
{
"cell_type": "code",
- "execution_count": 89,
+ "execution_count": 6,
"metadata": {
"collapsed": false
},
@@ -523,7 +523,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 89,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -542,7 +542,7 @@
},
{
"cell_type": "code",
- "execution_count": 90,
+ "execution_count": 7,
"metadata": {
"collapsed": false
},
@@ -635,7 +635,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 90,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -654,7 +654,7 @@
},
{
"cell_type": "code",
- "execution_count": 91,
+ "execution_count": 8,
"metadata": {
"collapsed": false
},
@@ -747,7 +747,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 91,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -769,7 +769,7 @@
},
{
"cell_type": "code",
- "execution_count": 92,
+ "execution_count": 9,
"metadata": {
"collapsed": false
},
@@ -787,7 +787,7 @@
"dtype: int64"
]
},
- "execution_count": 92,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -805,7 +805,7 @@
},
{
"cell_type": "code",
- "execution_count": 93,
+ "execution_count": 10,
"metadata": {
"collapsed": false
},
@@ -813,10 +813,10 @@
{
"data": {
"text/plain": [
- "array([6, 6, 7, 4, 9, 4, 0, 1, 0, 8])"
+ "array([2, 3, 0, 5, 0, 9, 4, 0, 7, 2])"
]
},
- "execution_count": 93,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -830,12 +830,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 11. Set the rows of the random numbers in the column"
+ "### Step 11. Use random numbers you generated as an index and assign NaN value to each of cell."
]
},
{
"cell_type": "code",
- "execution_count": 94,
+ "execution_count": 11,
"metadata": {
"collapsed": false
},
@@ -870,7 +870,7 @@
" \n",
"
\n",
" 1 | \n",
- " NaN | \n",
+ " 10.00 | \n",
" 2.36 | \n",
" 18.6 | \n",
" 101.0 | \n",
@@ -880,7 +880,7 @@
"
\n",
" \n",
" 2 | \n",
- " 10.00 | \n",
+ " NaN | \n",
" 1.95 | \n",
" 16.8 | \n",
" 100.0 | \n",
@@ -890,7 +890,7 @@
"
\n",
" \n",
" 3 | \n",
- " 13.24 | \n",
+ " NaN | \n",
" 2.59 | \n",
" 21.0 | \n",
" 100.0 | \n",
@@ -910,7 +910,7 @@
"
\n",
" \n",
" 5 | \n",
- " 14.39 | \n",
+ " NaN | \n",
" 1.87 | \n",
" 14.6 | \n",
" 96.0 | \n",
@@ -920,7 +920,7 @@
"
\n",
" \n",
" 6 | \n",
- " NaN | \n",
+ " 14.06 | \n",
" 2.15 | \n",
" 17.6 | \n",
" 121.0 | \n",
@@ -940,7 +940,7 @@
"
\n",
" \n",
" 8 | \n",
- " NaN | \n",
+ " 13.86 | \n",
" 1.35 | \n",
" 16.0 | \n",
" 98.0 | \n",
@@ -965,14 +965,14 @@
"text/plain": [
" alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
"0 NaN 1.78 11.2 100.0 2.76 \n",
- "1 NaN 2.36 18.6 101.0 3.24 \n",
- "2 10.00 1.95 16.8 100.0 3.49 \n",
- "3 13.24 2.59 21.0 100.0 2.69 \n",
+ "1 10.00 2.36 18.6 101.0 3.24 \n",
+ "2 NaN 1.95 16.8 100.0 3.49 \n",
+ "3 NaN 2.59 21.0 100.0 2.69 \n",
"4 NaN 1.76 15.2 112.0 3.39 \n",
- "5 14.39 1.87 14.6 96.0 2.52 \n",
- "6 NaN 2.15 17.6 121.0 2.51 \n",
+ "5 NaN 1.87 14.6 96.0 2.52 \n",
+ "6 14.06 2.15 17.6 121.0 2.51 \n",
"7 NaN 1.64 14.0 97.0 2.98 \n",
- "8 NaN 1.35 16.0 98.0 3.15 \n",
+ "8 13.86 1.35 16.0 98.0 3.15 \n",
"9 NaN 2.16 18.0 105.0 3.32 \n",
"\n",
" proanthocyanins hue \n",
@@ -988,7 +988,7 @@
"9 2.38 5.75 "
]
},
- "execution_count": 94,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -1007,7 +1007,7 @@
},
{
"cell_type": "code",
- "execution_count": 95,
+ "execution_count": 12,
"metadata": {
"collapsed": false
},
@@ -1025,7 +1025,7 @@
"dtype: int64"
]
},
- "execution_count": 95,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -1038,22 +1038,220 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 14. Print only the non-null values in alcohol"
+ "### Step 13. Delete the rows that contain missing values"
]
},
{
"cell_type": "code",
- "execution_count": 108,
+ "execution_count": 13,
"metadata": {
"collapsed": false
},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alcohol | \n",
+ " malic_acid | \n",
+ " alcalinity_of_ash | \n",
+ " magnesium | \n",
+ " flavanoids | \n",
+ " proanthocyanins | \n",
+ " hue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 10.00 | \n",
+ " 2.36 | \n",
+ " 18.6 | \n",
+ " 101.0 | \n",
+ " 3.24 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.51 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 3.15 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 16.8 | \n",
+ " 95.0 | \n",
+ " 2.43 | \n",
+ " 1.57 | \n",
+ " 5.00 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 16.0 | \n",
+ " 89.0 | \n",
+ " 2.76 | \n",
+ " 1.81 | \n",
+ " 5.60 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
+ "1 10.00 2.36 18.6 101.0 3.24 \n",
+ "6 14.06 2.15 17.6 121.0 2.51 \n",
+ "8 13.86 1.35 16.0 98.0 3.15 \n",
+ "10 14.12 1.48 16.8 95.0 2.43 \n",
+ "11 13.75 1.73 16.0 89.0 2.76 \n",
+ "\n",
+ " proanthocyanins hue \n",
+ "1 2.81 5.68 \n",
+ "6 1.25 5.05 \n",
+ "8 1.85 7.22 \n",
+ "10 1.57 5.00 \n",
+ "11 1.81 5.60 "
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wine = wine.dropna(axis = 0, how = \"any\")\n",
+ "wine.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 14. Print only the non-null values in alcohol"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 True\n",
+ "6 True\n",
+ "8 True\n",
+ "10 True\n",
+ "11 True\n",
+ "12 True\n",
+ "13 True\n",
+ "14 True\n",
+ "15 True\n",
+ "16 True\n",
+ "17 True\n",
+ "18 True\n",
+ "19 True\n",
+ "20 True\n",
+ "21 True\n",
+ "22 True\n",
+ "23 True\n",
+ "24 True\n",
+ "25 True\n",
+ "26 True\n",
+ "27 True\n",
+ "28 True\n",
+ "29 True\n",
+ "30 True\n",
+ "31 True\n",
+ "32 True\n",
+ "33 True\n",
+ "34 True\n",
+ "35 True\n",
+ "36 True\n",
+ " ... \n",
+ "147 True\n",
+ "148 True\n",
+ "149 True\n",
+ "150 True\n",
+ "151 True\n",
+ "152 True\n",
+ "153 True\n",
+ "154 True\n",
+ "155 True\n",
+ "156 True\n",
+ "157 True\n",
+ "158 True\n",
+ "159 True\n",
+ "160 True\n",
+ "161 True\n",
+ "162 True\n",
+ "163 True\n",
+ "164 True\n",
+ "165 True\n",
+ "166 True\n",
+ "167 True\n",
+ "168 True\n",
+ "169 True\n",
+ "170 True\n",
+ "171 True\n",
+ "172 True\n",
+ "173 True\n",
+ "174 True\n",
+ "175 True\n",
+ "176 True\n",
+ "Name: alcohol, dtype: bool"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mask = wine.alcohol.notnull()\n",
+ "mask"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
"outputs": [
{
"data": {
"text/plain": [
- "2 10.00\n",
- "3 13.24\n",
- "5 14.39\n",
+ "1 10.00\n",
+ "6 14.06\n",
+ "8 13.86\n",
"10 14.12\n",
"11 13.75\n",
"12 14.75\n",
@@ -1115,130 +1313,15 @@
"Name: alcohol, dtype: float64"
]
},
- "execution_count": 108,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "mask = wine.alcohol.notnull()\n",
- "mask\n",
- "\n",
"wine.alcohol[mask]"
]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Step 13. Delete the rows that contain missing values"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 109,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " alcohol | \n",
- " malic_acid | \n",
- " alcalinity_of_ash | \n",
- " magnesium | \n",
- " flavanoids | \n",
- " proanthocyanins | \n",
- " hue | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 2 | \n",
- " 10.00 | \n",
- " 1.95 | \n",
- " 16.8 | \n",
- " 100.0 | \n",
- " 3.49 | \n",
- " 2.18 | \n",
- " 7.80 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 13.24 | \n",
- " 2.59 | \n",
- " 21.0 | \n",
- " 100.0 | \n",
- " 2.69 | \n",
- " 1.82 | \n",
- " 4.32 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 14.39 | \n",
- " 1.87 | \n",
- " 14.6 | \n",
- " 96.0 | \n",
- " 2.52 | \n",
- " 1.98 | \n",
- " 5.25 | \n",
- "
\n",
- " \n",
- " 10 | \n",
- " 14.12 | \n",
- " 1.48 | \n",
- " 16.8 | \n",
- " 95.0 | \n",
- " 2.43 | \n",
- " 1.57 | \n",
- " 5.00 | \n",
- "
\n",
- " \n",
- " 11 | \n",
- " 13.75 | \n",
- " 1.73 | \n",
- " 16.0 | \n",
- " 89.0 | \n",
- " 2.76 | \n",
- " 1.81 | \n",
- " 5.60 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
- "2 10.00 1.95 16.8 100.0 3.49 \n",
- "3 13.24 2.59 21.0 100.0 2.69 \n",
- "5 14.39 1.87 14.6 96.0 2.52 \n",
- "10 14.12 1.48 16.8 95.0 2.43 \n",
- "11 13.75 1.73 16.0 89.0 2.76 \n",
- "\n",
- " proanthocyanins hue \n",
- "2 2.18 7.80 \n",
- "3 1.82 4.32 \n",
- "5 1.98 5.25 \n",
- "10 1.57 5.00 \n",
- "11 1.81 5.60 "
- ]
- },
- "execution_count": 109,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "wine = wine.dropna(axis = 0, how = \"any\")\n",
- "wine.head()"
- ]
- },
{
"cell_type": "markdown",
"metadata": {},
@@ -1248,7 +1331,7 @@
},
{
"cell_type": "code",
- "execution_count": 110,
+ "execution_count": 16,
"metadata": {
"collapsed": false
},
@@ -1274,32 +1357,32 @@
"
\n",
" 0 | \n",
" 10.00 | \n",
- " 1.95 | \n",
- " 16.8 | \n",
- " 100.0 | \n",
- " 3.49 | \n",
- " 2.18 | \n",
- " 7.80 | \n",
+ " 2.36 | \n",
+ " 18.6 | \n",
+ " 101.0 | \n",
+ " 3.24 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
"
\n",
" \n",
" 1 | \n",
- " 13.24 | \n",
- " 2.59 | \n",
- " 21.0 | \n",
- " 100.0 | \n",
- " 2.69 | \n",
- " 1.82 | \n",
- " 4.32 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.51 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
"
\n",
" \n",
" 2 | \n",
- " 14.39 | \n",
- " 1.87 | \n",
- " 14.6 | \n",
- " 96.0 | \n",
- " 2.52 | \n",
- " 1.98 | \n",
- " 5.25 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 3.15 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
"
\n",
" \n",
" 3 | \n",
@@ -1327,21 +1410,21 @@
],
"text/plain": [
" alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
- "0 10.00 1.95 16.8 100.0 3.49 \n",
- "1 13.24 2.59 21.0 100.0 2.69 \n",
- "2 14.39 1.87 14.6 96.0 2.52 \n",
+ "0 10.00 2.36 18.6 101.0 3.24 \n",
+ "1 14.06 2.15 17.6 121.0 2.51 \n",
+ "2 13.86 1.35 16.0 98.0 3.15 \n",
"3 14.12 1.48 16.8 95.0 2.43 \n",
"4 13.75 1.73 16.0 89.0 2.76 \n",
"\n",
" proanthocyanins hue \n",
- "0 2.18 7.80 \n",
- "1 1.82 4.32 \n",
- "2 1.98 5.25 \n",
+ "0 2.81 5.68 \n",
+ "1 1.25 5.05 \n",
+ "2 1.85 7.22 \n",
"3 1.57 5.00 \n",
"4 1.81 5.60 "
]
},
- "execution_count": 110,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -1369,8 +1452,9 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 2",
+ "display_name": "Python [default]",
"language": "python",
"name": "python2"
},
@@ -1384,7 +1468,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
- "version": "2.7.11"
+ "version": "2.7.12"
}
},
"nbformat": 4,
diff --git a/10_Deleting/Wine/Solutions.ipynb b/10_Deleting/Wine/Solutions.ipynb
index 0e76021c5..df9b41387 100644
--- a/10_Deleting/Wine/Solutions.ipynb
+++ b/10_Deleting/Wine/Solutions.ipynb
@@ -21,15 +21,12 @@
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
- "source": [
- "import pandas as pd\n",
- "import numpy as np"
- ]
+ "source": []
},
{
"cell_type": "markdown",
@@ -47,7 +44,7 @@
},
{
"cell_type": "code",
- "execution_count": 86,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -182,7 +179,7 @@
"4 1450 "
]
},
- "execution_count": 86,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -198,7 +195,7 @@
},
{
"cell_type": "code",
- "execution_count": 87,
+ "execution_count": 4,
"metadata": {
"collapsed": false
},
@@ -284,7 +281,7 @@
"4 14.20 1.76 15.2 112 3.39 1.97 6.75"
]
},
- "execution_count": 87,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -309,7 +306,7 @@
},
{
"cell_type": "code",
- "execution_count": 88,
+ "execution_count": 5,
"metadata": {
"collapsed": false
},
@@ -402,7 +399,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 88,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -418,7 +415,7 @@
},
{
"cell_type": "code",
- "execution_count": 89,
+ "execution_count": 6,
"metadata": {
"collapsed": false
},
@@ -511,7 +508,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 89,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -527,7 +524,7 @@
},
{
"cell_type": "code",
- "execution_count": 90,
+ "execution_count": 7,
"metadata": {
"collapsed": false
},
@@ -620,7 +617,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 90,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -636,7 +633,7 @@
},
{
"cell_type": "code",
- "execution_count": 91,
+ "execution_count": 8,
"metadata": {
"collapsed": false
},
@@ -729,7 +726,7 @@
"4 1.97 6.75 "
]
},
- "execution_count": 91,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -745,7 +742,7 @@
},
{
"cell_type": "code",
- "execution_count": 92,
+ "execution_count": 9,
"metadata": {
"collapsed": false
},
@@ -763,7 +760,7 @@
"dtype: int64"
]
},
- "execution_count": 92,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -779,7 +776,7 @@
},
{
"cell_type": "code",
- "execution_count": 93,
+ "execution_count": 10,
"metadata": {
"collapsed": false
},
@@ -787,28 +784,26 @@
{
"data": {
"text/plain": [
- "array([6, 6, 7, 4, 9, 4, 0, 1, 0, 8])"
+ "array([2, 3, 0, 5, 0, 9, 4, 0, 7, 2])"
]
},
- "execution_count": 93,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
- "source": [
- "# the number will be randoms, so yours will be different"
- ]
+ "source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Step 11. Set the rows of the random numbers in the column"
+ "### Step 11. Use random numbers you generated as an index and assign NaN value to each of cell."
]
},
{
"cell_type": "code",
- "execution_count": 94,
+ "execution_count": 11,
"metadata": {
"collapsed": false
},
@@ -843,7 +838,7 @@
"
\n",
" \n",
" 1 | \n",
- " NaN | \n",
+ " 10.00 | \n",
" 2.36 | \n",
" 18.6 | \n",
" 101.0 | \n",
@@ -853,7 +848,7 @@
"
\n",
" \n",
" 2 | \n",
- " 10.00 | \n",
+ " NaN | \n",
" 1.95 | \n",
" 16.8 | \n",
" 100.0 | \n",
@@ -863,7 +858,7 @@
"
\n",
" \n",
" 3 | \n",
- " 13.24 | \n",
+ " NaN | \n",
" 2.59 | \n",
" 21.0 | \n",
" 100.0 | \n",
@@ -883,7 +878,7 @@
"
\n",
" \n",
" 5 | \n",
- " 14.39 | \n",
+ " NaN | \n",
" 1.87 | \n",
" 14.6 | \n",
" 96.0 | \n",
@@ -893,7 +888,7 @@
"
\n",
" \n",
" 6 | \n",
- " NaN | \n",
+ " 14.06 | \n",
" 2.15 | \n",
" 17.6 | \n",
" 121.0 | \n",
@@ -913,7 +908,7 @@
"
\n",
" \n",
" 8 | \n",
- " NaN | \n",
+ " 13.86 | \n",
" 1.35 | \n",
" 16.0 | \n",
" 98.0 | \n",
@@ -938,14 +933,14 @@
"text/plain": [
" alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
"0 NaN 1.78 11.2 100.0 2.76 \n",
- "1 NaN 2.36 18.6 101.0 3.24 \n",
- "2 10.00 1.95 16.8 100.0 3.49 \n",
- "3 13.24 2.59 21.0 100.0 2.69 \n",
+ "1 10.00 2.36 18.6 101.0 3.24 \n",
+ "2 NaN 1.95 16.8 100.0 3.49 \n",
+ "3 NaN 2.59 21.0 100.0 2.69 \n",
"4 NaN 1.76 15.2 112.0 3.39 \n",
- "5 14.39 1.87 14.6 96.0 2.52 \n",
- "6 NaN 2.15 17.6 121.0 2.51 \n",
+ "5 NaN 1.87 14.6 96.0 2.52 \n",
+ "6 14.06 2.15 17.6 121.0 2.51 \n",
"7 NaN 1.64 14.0 97.0 2.98 \n",
- "8 NaN 1.35 16.0 98.0 3.15 \n",
+ "8 13.86 1.35 16.0 98.0 3.15 \n",
"9 NaN 2.16 18.0 105.0 3.32 \n",
"\n",
" proanthocyanins hue \n",
@@ -961,14 +956,12 @@
"9 2.38 5.75 "
]
},
- "execution_count": 94,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
- "source": [
- "# the number will be randoms, so yours will be different"
- ]
+ "source": []
},
{
"cell_type": "markdown",
@@ -979,7 +972,7 @@
},
{
"cell_type": "code",
- "execution_count": 95,
+ "execution_count": 12,
"metadata": {
"collapsed": false
},
@@ -997,15 +990,122 @@
"dtype: int64"
]
},
- "execution_count": 95,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
"source": [
- "# the number will be randoms, so yours will be different"
+ "### Step 13. Delete the rows that contain missing values"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " alcohol | \n",
+ " malic_acid | \n",
+ " alcalinity_of_ash | \n",
+ " magnesium | \n",
+ " flavanoids | \n",
+ " proanthocyanins | \n",
+ " hue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 10.00 | \n",
+ " 2.36 | \n",
+ " 18.6 | \n",
+ " 101.0 | \n",
+ " 3.24 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.51 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 3.15 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 14.12 | \n",
+ " 1.48 | \n",
+ " 16.8 | \n",
+ " 95.0 | \n",
+ " 2.43 | \n",
+ " 1.57 | \n",
+ " 5.00 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 13.75 | \n",
+ " 1.73 | \n",
+ " 16.0 | \n",
+ " 89.0 | \n",
+ " 2.76 | \n",
+ " 1.81 | \n",
+ " 5.60 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
+ "1 10.00 2.36 18.6 101.0 3.24 \n",
+ "6 14.06 2.15 17.6 121.0 2.51 \n",
+ "8 13.86 1.35 16.0 98.0 3.15 \n",
+ "10 14.12 1.48 16.8 95.0 2.43 \n",
+ "11 13.75 1.73 16.0 89.0 2.76 \n",
+ "\n",
+ " proanthocyanins hue \n",
+ "1 2.81 5.68 \n",
+ "6 1.25 5.05 \n",
+ "8 1.85 7.22 \n",
+ "10 1.57 5.00 \n",
+ "11 1.81 5.60 "
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": []
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -1015,17 +1115,100 @@
},
{
"cell_type": "code",
- "execution_count": 108,
+ "execution_count": 14,
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 True\n",
+ "6 True\n",
+ "8 True\n",
+ "10 True\n",
+ "11 True\n",
+ "12 True\n",
+ "13 True\n",
+ "14 True\n",
+ "15 True\n",
+ "16 True\n",
+ "17 True\n",
+ "18 True\n",
+ "19 True\n",
+ "20 True\n",
+ "21 True\n",
+ "22 True\n",
+ "23 True\n",
+ "24 True\n",
+ "25 True\n",
+ "26 True\n",
+ "27 True\n",
+ "28 True\n",
+ "29 True\n",
+ "30 True\n",
+ "31 True\n",
+ "32 True\n",
+ "33 True\n",
+ "34 True\n",
+ "35 True\n",
+ "36 True\n",
+ " ... \n",
+ "147 True\n",
+ "148 True\n",
+ "149 True\n",
+ "150 True\n",
+ "151 True\n",
+ "152 True\n",
+ "153 True\n",
+ "154 True\n",
+ "155 True\n",
+ "156 True\n",
+ "157 True\n",
+ "158 True\n",
+ "159 True\n",
+ "160 True\n",
+ "161 True\n",
+ "162 True\n",
+ "163 True\n",
+ "164 True\n",
+ "165 True\n",
+ "166 True\n",
+ "167 True\n",
+ "168 True\n",
+ "169 True\n",
+ "170 True\n",
+ "171 True\n",
+ "172 True\n",
+ "173 True\n",
+ "174 True\n",
+ "175 True\n",
+ "176 True\n",
+ "Name: alcohol, dtype: bool"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
- "2 10.00\n",
- "3 13.24\n",
- "5 14.39\n",
+ "1 10.00\n",
+ "6 14.06\n",
+ "8 13.86\n",
"10 14.12\n",
"11 13.75\n",
"12 14.75\n",
@@ -1087,125 +1270,12 @@
"Name: alcohol, dtype: float64"
]
},
- "execution_count": 108,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# the number will be randoms, so yours will be different"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Step 13. Delete the rows that contain missing values"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 109,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " alcohol | \n",
- " malic_acid | \n",
- " alcalinity_of_ash | \n",
- " magnesium | \n",
- " flavanoids | \n",
- " proanthocyanins | \n",
- " hue | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 2 | \n",
- " 10.00 | \n",
- " 1.95 | \n",
- " 16.8 | \n",
- " 100.0 | \n",
- " 3.49 | \n",
- " 2.18 | \n",
- " 7.80 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 13.24 | \n",
- " 2.59 | \n",
- " 21.0 | \n",
- " 100.0 | \n",
- " 2.69 | \n",
- " 1.82 | \n",
- " 4.32 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 14.39 | \n",
- " 1.87 | \n",
- " 14.6 | \n",
- " 96.0 | \n",
- " 2.52 | \n",
- " 1.98 | \n",
- " 5.25 | \n",
- "
\n",
- " \n",
- " 10 | \n",
- " 14.12 | \n",
- " 1.48 | \n",
- " 16.8 | \n",
- " 95.0 | \n",
- " 2.43 | \n",
- " 1.57 | \n",
- " 5.00 | \n",
- "
\n",
- " \n",
- " 11 | \n",
- " 13.75 | \n",
- " 1.73 | \n",
- " 16.0 | \n",
- " 89.0 | \n",
- " 2.76 | \n",
- " 1.81 | \n",
- " 5.60 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
- "2 10.00 1.95 16.8 100.0 3.49 \n",
- "3 13.24 2.59 21.0 100.0 2.69 \n",
- "5 14.39 1.87 14.6 96.0 2.52 \n",
- "10 14.12 1.48 16.8 95.0 2.43 \n",
- "11 13.75 1.73 16.0 89.0 2.76 \n",
- "\n",
- " proanthocyanins hue \n",
- "2 2.18 7.80 \n",
- "3 1.82 4.32 \n",
- "5 1.98 5.25 \n",
- "10 1.57 5.00 \n",
- "11 1.81 5.60 "
- ]
- },
- "execution_count": 109,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
- "source": [
- "# the number will be randoms, so yours will be different"
- ]
+ "source": []
},
{
"cell_type": "markdown",
@@ -1216,7 +1286,7 @@
},
{
"cell_type": "code",
- "execution_count": 110,
+ "execution_count": 16,
"metadata": {
"collapsed": false
},
@@ -1242,32 +1312,32 @@
"
\n",
" 0 | \n",
" 10.00 | \n",
- " 1.95 | \n",
- " 16.8 | \n",
- " 100.0 | \n",
- " 3.49 | \n",
- " 2.18 | \n",
- " 7.80 | \n",
+ " 2.36 | \n",
+ " 18.6 | \n",
+ " 101.0 | \n",
+ " 3.24 | \n",
+ " 2.81 | \n",
+ " 5.68 | \n",
"
\n",
" \n",
" 1 | \n",
- " 13.24 | \n",
- " 2.59 | \n",
- " 21.0 | \n",
- " 100.0 | \n",
- " 2.69 | \n",
- " 1.82 | \n",
- " 4.32 | \n",
+ " 14.06 | \n",
+ " 2.15 | \n",
+ " 17.6 | \n",
+ " 121.0 | \n",
+ " 2.51 | \n",
+ " 1.25 | \n",
+ " 5.05 | \n",
"
\n",
" \n",
" 2 | \n",
- " 14.39 | \n",
- " 1.87 | \n",
- " 14.6 | \n",
- " 96.0 | \n",
- " 2.52 | \n",
- " 1.98 | \n",
- " 5.25 | \n",
+ " 13.86 | \n",
+ " 1.35 | \n",
+ " 16.0 | \n",
+ " 98.0 | \n",
+ " 3.15 | \n",
+ " 1.85 | \n",
+ " 7.22 | \n",
"
\n",
" \n",
" 3 | \n",
@@ -1295,21 +1365,21 @@
],
"text/plain": [
" alcohol malic_acid alcalinity_of_ash magnesium flavanoids \\\n",
- "0 10.00 1.95 16.8 100.0 3.49 \n",
- "1 13.24 2.59 21.0 100.0 2.69 \n",
- "2 14.39 1.87 14.6 96.0 2.52 \n",
+ "0 10.00 2.36 18.6 101.0 3.24 \n",
+ "1 14.06 2.15 17.6 121.0 2.51 \n",
+ "2 13.86 1.35 16.0 98.0 3.15 \n",
"3 14.12 1.48 16.8 95.0 2.43 \n",
"4 13.75 1.73 16.0 89.0 2.76 \n",
"\n",
" proanthocyanins hue \n",
- "0 2.18 7.80 \n",
- "1 1.82 4.32 \n",
- "2 1.98 5.25 \n",
+ "0 2.81 5.68 \n",
+ "1 1.25 5.05 \n",
+ "2 1.85 7.22 \n",
"3 1.57 5.00 \n",
"4 1.81 5.60 "
]
},
- "execution_count": 110,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -1334,8 +1404,9 @@
}
],
"metadata": {
+ "anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python 2",
+ "display_name": "Python [default]",
"language": "python",
"name": "python2"
},
@@ -1349,7 +1420,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
- "version": "2.7.11"
+ "version": "2.7.12"
}
},
"nbformat": 4,