forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbincount_webgpu.ts
98 lines (91 loc) · 3.07 KB
/
bincount_webgpu.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/**
* @license
* Copyright 2022 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {atomicAddSnippet} from './shader_util';
import {getMainHeaderString as main, WebGPUProgram} from './webgpu_program';
import {computeDispatch, flatDispatchLayout} from './webgpu_util';
const writeSnippet = `
fn bincount_write(index: i32, value: f32) {
${atomicAddSnippet('&result[index]', 'value', 'float32')}
}
`;
const binaryWriteSnippet = `
fn bincount_write(index: i32, value: f32) {
atomicStore(&result[index], bitcast<i32>(value));
}
`;
export class BincountProgram implements WebGPUProgram {
outputShape: number[] = [];
shaderKey: string;
dispatchLayout: {x: number[]};
dispatch: [number, number, number];
variableNames = ['x'];
uniforms = 'binCountSize : i32,';
workgroupSize: [number, number, number] = [64, 1, 1];
atomic = true;
hasWeights = true;
binaryOutput = false;
rank: number;
constructor(
shape: [number]|[number, number], hasWeights: boolean,
binaryOutput = false) {
this.outputShape = shape;
this.rank = shape.length;
this.dispatchLayout = flatDispatchLayout(this.outputShape);
this.dispatch = computeDispatch(
this.dispatchLayout, this.outputShape, this.workgroupSize);
this.binaryOutput = binaryOutput;
if (binaryOutput) {
this.atomic = false;
}
this.hasWeights = hasWeights;
if (this.hasWeights) {
this.variableNames.push('w');
}
this.shaderKey =
`bincount_${this.hasWeights}_${this.binaryOutput}_${this.rank}`;
}
getUserCode(): string {
const userCode = `
${this.binaryOutput ? binaryWriteSnippet : writeSnippet}
${main('index')} {
${
this.rank === 1 ?
`if (index < uniforms.xShape) {
let indexVal = i32(getX(index));
if (indexVal < uniforms.binCountSize) {
let value = ${
this.binaryOutput ? 1. :
(this.hasWeights ? 'getW(index)' : '1.')};
bincount_write(indexVal, value);
}
}` :
`let coord = getCoordsFromIndex(index);
if (coordsInBounds2D(coord, uniforms.xShape)) {
let indexVal = i32(getX(coord[0], coord[1]));
if (indexVal < uniforms.binCountSize) {
let value = ${
this.binaryOutput ?
1. :
(this.hasWeights ? 'getW(coord[0], coord[1])' : '1.')};
bincount_write(coord.x * uniforms.binCountSize + indexVal, value);
}
}`}
}
`;
return userCode;
}
}