forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft_webgpu.ts
82 lines (71 loc) · 2.65 KB
/
fft_webgpu.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/**
* @license
* Copyright 2022 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {getMainHeaderString as main, WebGPUProgram} from './webgpu_program';
import {computeDispatch, flatDispatchLayout} from './webgpu_util';
export class FFTProgram implements WebGPUProgram {
variableNames: string[] = ['real', 'imag'];
outputShape: number[] = [];
shaderKey: string;
dispatchLayout: {x: number[]};
dispatch: [number, number, number];
uniforms = 'exponentMultiplier : f32, denominator: f32,';
workgroupSize: [number, number, number] = [64, 1, 1];
size = true;
component: string;
constructor(component: 'real'|'imag', shape: [number, number]) {
this.outputShape = shape;
this.dispatchLayout = flatDispatchLayout(this.outputShape);
this.dispatch = computeDispatch(
this.dispatchLayout, this.outputShape, this.workgroupSize);
this.component = component;
this.shaderKey = `fft_${component}`;
}
getUserCode(): string {
const opString = this.component === 'real' ?
'return real * expR - imag * expI;' :
'return real * expI + imag * expR;';
const userCode = `
fn unaryOpComplex(real: f32, expR: f32, imag: f32, expI: f32) -> f32 {
${opString}
}
fn mulMatDFT(batch: i32, index: i32) -> f32 {
let indexRatio = f32(index) / f32(uniforms.realShape[1]);
let exponentMultiplierTimesIndexRatio =
uniforms.exponentMultiplier * indexRatio;
var result = 0.0;
for (var i = 0; i < uniforms.realShape[1]; i = i + 1) {
// x = (-2|2 * PI / N) * index * i;
let x = exponentMultiplierTimesIndexRatio * f32(i);
let expR = cos(x);
let expI = sin(x);
let real = getReal(batch, i);
let imag = getImag(batch, i);
result = result +
unaryOpComplex(real, expR, imag, expI) / uniforms.denominator;
}
return result;
}
${main('index')} {
if (index < uniforms.size) {
let coords = getOutputCoords();
setOutputAtIndex(index, mulMatDFT(coords[0], coords[1]));
}
}
`;
return userCode;
}
}