forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmirror_pad_webgpu.ts
89 lines (82 loc) · 3.2 KB
/
mirror_pad_webgpu.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {getCoordsDataType, getMainHeaderString as main, WebGPUProgram} from './webgpu_program';
import {computeDispatch, flatDispatchLayout} from './webgpu_util';
export class MirrorPadProgram implements WebGPUProgram {
outputShape: number[];
shaderKey: string;
uniforms = '';
dispatchLayout: {x: number[]};
dispatch: [number, number, number];
variableNames = ['x'];
workgroupSize: [number, number, number] = [64, 1, 1];
xShape: number[];
offset: number;
size = true;
constructor(
xShape: number[], paddings: Array<[number, number]>,
mode: 'reflect'|'symmetric') {
this.outputShape = paddings.map(
(p, i) => p[0] /* beforePad */ + xShape[i] + p[1] /* afterPad */);
this.dispatchLayout = flatDispatchLayout(this.outputShape);
this.dispatch = computeDispatch(
this.dispatchLayout, this.outputShape, this.workgroupSize);
this.xShape = xShape;
paddings.map((_, i) => {
this.uniforms += ` pad${i} : vec2<i32>,`;
});
this.offset = mode === 'reflect' ? 0 : 1;
this.shaderKey = `mirrorPad_${mode}`;
}
getUserCode(): string {
const rank = this.xShape.length;
// The length of paddings are same with the rank of the input tensor.
const start = this.xShape.map((_, i) => `uniforms.pad${i}[0]`).join(',');
const end = this.xShape
.map(
(_, i) => `uniforms.pad${i}[0] + uniforms.xShape${
rank > 1 ? `[${i}]` : ''}`)
.join(',');
const shaderStart = rank === 1 ? 'start' : 'start[i]';
const shaderEnd = rank === 1 ? 'end' : 'end[i]';
const shaderOutC = rank === 1 ? 'outC' : 'outC[i]';
const dtype = getCoordsDataType(rank);
const unpackedCoords = rank > 1 ?
['coords[0]', 'coords[1]', 'coords[2]', 'coords[3]'].slice(0, rank) :
'coords';
return `
${main('index')} {
if (index < uniforms.size) {
let start = ${dtype}(${start});
let end = ${dtype}(${end});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${rank}; i = i + 1) {
if (${shaderOutC} < ${shaderStart}) {
${shaderOutC} = ${shaderStart} * 2 - ${shaderOutC} - ${
this.offset};
} else if(${shaderOutC} >= ${shaderEnd}) {
${shaderOutC} = (${shaderEnd} - 1) * 2 - ${shaderOutC} + ${
this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${unpackedCoords}));
}
}
`;
}
}