forked from tensorflow/tfjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultinomial_webgpu.ts
77 lines (68 loc) · 2.54 KB
/
multinomial_webgpu.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/**
* @license
* Copyright 2023 Google LLC.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {getMainHeaderString as main, WebGPUProgram} from './webgpu_program';
import {computeDispatch, flatDispatchLayout} from './webgpu_util';
export class MultinomialProgram implements WebGPUProgram {
variableNames: string[] = ['probs'];
outputShape: number[] = [];
shaderKey: string;
dispatchLayout: {x: number[]};
dispatch: [number, number, number];
uniforms = 'seed : f32, numOutcomes: i32,';
workgroupSize: [number, number, number] = [64, 1, 1];
size = true;
constructor(batchSize: number, numSamples: number) {
this.outputShape = [batchSize, numSamples];
this.dispatchLayout = flatDispatchLayout(this.outputShape);
this.dispatch = computeDispatch(
this.dispatchLayout, this.outputShape, this.workgroupSize);
this.shaderKey = 'multinomial';
}
getUserCode(): string {
const userCode = `
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
fn random (seed : f32, resultUV : vec2<f32>) -> f32 {
let HASHSCALE1 = 443.8975;
let p = resultUV * seed;
var p3 = fract(vec3<f32>(p.xyx) * HASHSCALE1);
p3 = p3 + dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${main('index')} {
if (index < uniforms.size) {
let coords = getOutputCoords();
let batch = coords[0];
let resUV = vec2<f32>(f32(coords[1]) / f32(uniforms.outShape[1]),
f32(coords[0]) / f32(uniforms.outShape[0]));
let r = random(uniforms.seed, resUV);
var cdf = 0.0;
for (var i = 0; i < uniforms.numOutcomes - 1; i = i + 1) {
cdf = cdf + getProbs(batch, i);
if (r < cdf) {
setOutputAtIndexI32(index, i);
return;
}
}
// If no other event happened, last event happened.
setOutputAtIndexI32(index, uniforms.numOutcomes - 1);
}
}
`;
return userCode;
}
}