forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimer.c
365 lines (296 loc) · 9.59 KB
/
timer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/*
* Copyright (c) 1997-2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/init.h>
#include <zephyr/internal/syscall_handler.h>
#include <stdbool.h>
#include <zephyr/spinlock.h>
#include <ksched.h>
#include <wait_q.h>
static struct k_spinlock lock;
#ifdef CONFIG_OBJ_CORE_TIMER
static struct k_obj_type obj_type_timer;
#endif /* CONFIG_OBJ_CORE_TIMER */
/**
* @brief Handle expiration of a kernel timer object.
*
* @param t Timeout used by the timer.
*/
void z_timer_expiration_handler(struct _timeout *t)
{
struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout);
struct k_thread *thread;
k_spinlock_key_t key = k_spin_lock(&lock);
/* In sys_clock_announce(), when a timeout expires, it is first removed
* from the timeout list, then its expiration handler is called (with
* unlocked interrupts). For kernel timers, the expiration handler is
* this function. Usually, the timeout structure related to the timer
* that is handled here will not be linked to the timeout list at this
* point. But it may happen that before this function is executed and
* interrupts are locked again, a given timer gets restarted from an
* interrupt context that has a priority higher than the system timer
* interrupt. Then, the timeout structure for this timer will turn out
* to be linked to the timeout list. And in such case, since the timer
* was restarted, its expiration handler should not be executed then,
* so the function exits immediately.
*/
if (sys_dnode_is_linked(&t->node)) {
k_spin_unlock(&lock, key);
return;
}
/*
* if the timer is periodic, start it again; don't add _TICK_ALIGN
* since we're already aligned to a tick boundary
*/
if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) &&
!K_TIMEOUT_EQ(timer->period, K_FOREVER)) {
k_timeout_t next = timer->period;
/* see note about z_add_timeout() in z_impl_k_timer_start() */
next.ticks = MAX(next.ticks - 1, 0);
#ifdef CONFIG_TIMEOUT_64BIT
/* Exploit the fact that uptime during a kernel
* timeout handler reflects the time of the scheduled
* event and not real time to get some inexpensive
* protection against late interrupts. If we're
* delayed for any reason, we still end up calculating
* the next expiration as a regular stride from where
* we "should" have run. Requires absolute timeouts.
* (Note offset by one: we're nominally at the
* beginning of a tick, so need to defeat the "round
* down" behavior on timeout addition).
*/
next = K_TIMEOUT_ABS_TICKS(k_uptime_ticks() + 1 + next.ticks);
#endif /* CONFIG_TIMEOUT_64BIT */
z_add_timeout(&timer->timeout, z_timer_expiration_handler,
next);
}
/* update timer's status */
timer->status += 1U;
/* invoke timer expiry function */
if (timer->expiry_fn != NULL) {
/* Unlock for user handler. */
k_spin_unlock(&lock, key);
timer->expiry_fn(timer);
key = k_spin_lock(&lock);
}
if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
k_spin_unlock(&lock, key);
return;
}
thread = z_waitq_head(&timer->wait_q);
if (thread == NULL) {
k_spin_unlock(&lock, key);
return;
}
z_unpend_thread_no_timeout(thread);
arch_thread_return_value_set(thread, 0);
k_spin_unlock(&lock, key);
z_ready_thread(thread);
}
void k_timer_init(struct k_timer *timer,
k_timer_expiry_t expiry_fn,
k_timer_stop_t stop_fn)
{
timer->expiry_fn = expiry_fn;
timer->stop_fn = stop_fn;
timer->status = 0U;
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
z_waitq_init(&timer->wait_q);
}
z_init_timeout(&timer->timeout);
SYS_PORT_TRACING_OBJ_INIT(k_timer, timer);
timer->user_data = NULL;
k_object_init(timer);
#ifdef CONFIG_OBJ_CORE_TIMER
k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer);
#endif /* CONFIG_OBJ_CORE_TIMER */
}
void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration,
k_timeout_t period)
{
SYS_PORT_TRACING_OBJ_FUNC(k_timer, start, timer, duration, period);
/* Acquire spinlock to ensure safety during concurrent calls to
* k_timer_start for scheduling or rescheduling. This is necessary
* since k_timer_start can be preempted, especially for the same
* timer instance.
*/
k_spinlock_key_t key = k_spin_lock(&lock);
if (K_TIMEOUT_EQ(duration, K_FOREVER)) {
k_spin_unlock(&lock, key);
return;
}
/* z_add_timeout() always adds one to the incoming tick count
* to round up to the next tick (by convention it waits for
* "at least as long as the specified timeout"), but the
* period interval is always guaranteed to be reset from
* within the timer ISR, so no round up is desired and 1 is
* subtracted in there.
*
* Note that the duration (!) value gets the same treatment
* for backwards compatibility. This is unfortunate
* (i.e. k_timer_start() doesn't treat its initial sleep
* argument the same way k_sleep() does), but historical. The
* timer_api test relies on this behavior.
*/
if (Z_TICK_ABS(duration.ticks) < 0) {
duration.ticks = MAX(duration.ticks - 1, 0);
}
(void)z_abort_timeout(&timer->timeout);
timer->period = period;
timer->status = 0U;
z_add_timeout(&timer->timeout, z_timer_expiration_handler,
duration);
k_spin_unlock(&lock, key);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_timer_start(struct k_timer *timer,
k_timeout_t duration,
k_timeout_t period)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
z_impl_k_timer_start(timer, duration, period);
}
#include <zephyr/syscalls/k_timer_start_mrsh.c>
#endif /* CONFIG_USERSPACE */
void z_impl_k_timer_stop(struct k_timer *timer)
{
SYS_PORT_TRACING_OBJ_FUNC(k_timer, stop, timer);
bool inactive = (z_abort_timeout(&timer->timeout) != 0);
if (inactive) {
return;
}
if (timer->stop_fn != NULL) {
timer->stop_fn(timer);
}
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q);
if (pending_thread != NULL) {
z_ready_thread(pending_thread);
z_reschedule_unlocked();
}
}
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_timer_stop(struct k_timer *timer)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
z_impl_k_timer_stop(timer);
}
#include <zephyr/syscalls/k_timer_stop_mrsh.c>
#endif /* CONFIG_USERSPACE */
uint32_t z_impl_k_timer_status_get(struct k_timer *timer)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t result = timer->status;
timer->status = 0U;
k_spin_unlock(&lock, key);
return result;
}
#ifdef CONFIG_USERSPACE
static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
return z_impl_k_timer_status_get(timer);
}
#include <zephyr/syscalls/k_timer_status_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
uint32_t z_impl_k_timer_status_sync(struct k_timer *timer)
{
__ASSERT(!arch_is_in_isr(), "");
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, status_sync, timer);
if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
uint32_t result;
do {
k_spinlock_key_t key = k_spin_lock(&lock);
if (!z_is_inactive_timeout(&timer->timeout)) {
result = *(volatile uint32_t *)&timer->status;
timer->status = 0U;
k_spin_unlock(&lock, key);
if (result > 0) {
break;
}
} else {
result = timer->status;
k_spin_unlock(&lock, key);
break;
}
} while (true);
return result;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t result = timer->status;
if (result == 0U) {
if (!z_is_inactive_timeout(&timer->timeout)) {
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_timer, status_sync, timer, K_FOREVER);
/* wait for timer to expire or stop */
(void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER);
/* get updated timer status */
key = k_spin_lock(&lock);
result = timer->status;
} else {
/* timer is already stopped */
}
} else {
/* timer has already expired at least once */
}
timer->status = 0U;
k_spin_unlock(&lock, key);
/**
* @note New tracing hook
*/
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, status_sync, timer, result);
return result;
}
#ifdef CONFIG_USERSPACE
static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
return z_impl_k_timer_status_sync(timer);
}
#include <zephyr/syscalls/k_timer_status_sync_mrsh.c>
static inline k_ticks_t z_vrfy_k_timer_remaining_ticks(
const struct k_timer *timer)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
return z_impl_k_timer_remaining_ticks(timer);
}
#include <zephyr/syscalls/k_timer_remaining_ticks_mrsh.c>
static inline k_ticks_t z_vrfy_k_timer_expires_ticks(
const struct k_timer *timer)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
return z_impl_k_timer_expires_ticks(timer);
}
#include <zephyr/syscalls/k_timer_expires_ticks_mrsh.c>
static inline void *z_vrfy_k_timer_user_data_get(const struct k_timer *timer)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
return z_impl_k_timer_user_data_get(timer);
}
#include <zephyr/syscalls/k_timer_user_data_get_mrsh.c>
static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer,
void *user_data)
{
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER));
z_impl_k_timer_user_data_set(timer, user_data);
}
#include <zephyr/syscalls/k_timer_user_data_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_OBJ_CORE_TIMER
static int init_timer_obj_core_list(void)
{
/* Initialize timer object type */
z_obj_type_init(&obj_type_timer, K_OBJ_TYPE_TIMER_ID,
offsetof(struct k_timer, obj_core));
/* Initialize and link statically defined timers */
STRUCT_SECTION_FOREACH(k_timer, timer) {
k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer);
}
return 0;
}
SYS_INIT(init_timer_obj_core_list, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJ_CORE_TIMER */