forked from StollLab/EasySpin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
equivcouple.html
107 lines (88 loc) · 2.65 KB
/
equivcouple.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<link rel="icon" href="img/eslogo196.png">
<link rel="stylesheet" type="text/css" href="style.css">
<link rel="stylesheet" href="highlight/matlab.css">
<script src="highlight/highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<title>equivcouple</title>
</head>
<body>
<header>
<ul>
<li><img src="img/eslogo42.png">
<li class="header-title">EasySpin
<li><a href="index.html">Documentation</a>
<li><a href="references.html">Publications</a>
<li><a href="http://easyspin.org" target="_blank">Website</a>
<li><a href="http://easyspin.org/academy" target="_blank">Academy</a>
<li><a href="http://easyspin.org/forum" target="_blank">Forum</a>
</ul>
</header>
<section>
<div class="functitle">equivcouple</div>
<p>
Coupling of equivalent spins.
</p>
<!-- ====================================================== -->
<div class="subtitle">Syntax</div>
<pre class="matlab">
[K,N] = equivcouple(I,n)
</pre>
<!-- ====================================================== -->
<div class="subtitle">Description</div>
<p>
The states due to <code>n</code> spins with quantum number <code>I</code>
can be coupled to give a set of independent subspins. Their quantum numbers
are returned in <code>F</code>, their respective abundance
in <code>N</code>.
</p>
<!-- ====================================================== -->
<div class="subtitle">Examples</div>
<p>
Five equivalent spins-1/2 can be coupled using
</p>
<pre class="matlab">
[F,N] = equivcouple(1/2,5)
</pre>
<pre class="mloutput">
F =
2.5000 1.5000 0.5000
N =
1 4 5
</pre>
<p>
This means that the coupling of the five spins-1/2 gives 1 spin-5/2, 4 spins-3/2
and 5 spins-1.
<!-- ====================================================== -->
<div class="subtitle">Algorithm</div>
<p>
The algorithm is very simple and is best illustrated by an example:
5 spins-1/2 give rise to a first-order splitting
pattern [1 5 10 10 5 1] (see the function
<a class="esf" href="equivsplit.html">equivsplit</a>).
This splitting pattern can be decomposed into several
subpatterns due to one
spin-5/2, four spin-3/2 and five spin-1/2 according to
</p>
<pre>
5 5 5 spins-1/2
4 4 4 4 4 spins-3/2
1 1 1 1 1 1 1 spin-5/2
------------------
1 5 10 10 5 1 sum
</pre>
so <code>F = [2.5 1.5 0.5]</code> and <code>N = [1 4 5]</code>.
<!-- ====================================================== -->
<div class="subtitle">See also</div>
<p>
<a class="esf" href="equivsplit.html">equivsplit</a>,
<a class="esf" href="garlic.html">garlic</a>
</p>
<hr>
</section>
<footer></footer>
</body>
</html>