Skip to content

pecaso/Stronger-yolo

Repository files navigation

Note

I'm solving scale invariant. If you have a good paper, you can email me by [email protected]. Thanks!

YOLO_v3

YOLO_v3 implemented with tensorflow

  • data augmentation(release)
  • multi-scale training(release)
  • Focal loss(increase 2 mAP, release)
  • Single-Shot Object Detection with Enriched Semantics(incrase 1 mAP, not release)
  • Soft-NMS(drop 0.5 mAP, release)
  • Group Normalization(didn't use it in project, release)
  • Deformable convolutional networks
  • Scale-Aware Trident Networks for Object Detection
  • Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

performance on VOC2007

(score_threshold=0.01, iou_threshold=0.45, test_input_size=544)
If you want to get a higher mAP, you can set the score threshold to 0.01.
If you want to apply it, you can set the score threshold to 0.2.

  1. initial with yolov3-608.weights
    mAP
  2. initial with darknet53.weights
    The same performance as Tencent's reimplementation
    mAP

Usage

  1. clone YOLO_v3 repository

    git clone https://github.com/Stinky-Tofu/YOLO_v3.git
  2. prepare data
    (1) download datasets
    Create a new folder named data in the directory where the YOLO_V3 folder is located, and then create a new folder named VOC in the data/.
    Download VOC 2012_trainvalVOC 2007_trainvalVOC 2007_test, and put datasets into data/VOC, name as 2012_trainval2007_trainval2007_test separately.
    The file structure is as follows:
    |--YOLO_V3
    |--data
    |--|--VOC
    |--|--|--2012_trainval
    |--|--|--2007_trainval
    |--|--|--2007_test

    (2) convert data format
    You should set DATASET_PATH in config.py to the path of the VOC dataset, for example: DATASET_PATH = '/home/xzh/doc/code/python_code/data/VOC',and then

    python voc_annotation.py
  3. prepare initial weights
    Download YOLOv3-608.weights firstly, put the yolov3.weights into yolov3_to_tf/, and then

    cd yolov3_to_tf
    python3 convert_weights.py --weights_file=yolov3.weights --dara_format=NHWC --ckpt_file=./saved_model/yolov3_608_coco_pretrained.ckpt
    cd ..
    python rename.py
  4. Train

    python train.py
  5. Test
    Download weight file yolo_544_88.29%.ckpt

    python test.py --gpu=0 --map_calc=True --weights_file=model_path.ckpt
    cd mAP
    python main.py -na -np

Train for custom dataset

  1. Generate your own annotation file train_annotation.txt and test_annotation.txt, one row for one image.
    Row format: image_path bbox0 bbox1 ...
    Bbox format: xmin,ymin,xmax,ymax,class_id(no space), for example:
    /home/xzh/doc/code/python_code/data/VOC/2007_test/JPEGImages/000001.jpg 48,240,195,371,11 8,12,352,498,14
  2. Put the train_annotation.txt and test_annotation.txt into YOLO_V3/data/.
  3. Configure config.py for your dataset.
  4. Start training.
    python train.py

Reference:

paper:

mAP calculate: mean Average Precision

Requirements

  • Python2.7.12
  • Numpy1.14.5
  • Tensorflow.1.8.0
  • Opencv3.4.1

About

Improve yolo with latest paper

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%