forked from richardcochran/linuxptp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
phc2sys.c
819 lines (714 loc) · 19.9 KB
/
phc2sys.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/**
* @file phc2sys.c
* @brief Utility program to synchronize two clocks via a PPS.
* @note Copyright (C) 2012 Richard Cochran <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <errno.h>
#include <fcntl.h>
#include <float.h>
#include <inttypes.h>
#include <limits.h>
#include <poll.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/pps.h>
#include <linux/ptp_clock.h>
#include "clockadj.h"
#include "clockcheck.h"
#include "ds.h"
#include "fsm.h"
#include "missing.h"
#include "phc.h"
#include "pi.h"
#include "pmc_common.h"
#include "print.h"
#include "servo.h"
#include "sk.h"
#include "stats.h"
#include "sysoff.h"
#include "tlv.h"
#include "util.h"
#include "version.h"
#define KP 0.7
#define KI 0.3
#define NS_PER_SEC 1000000000LL
#define PHC_PPS_OFFSET_LIMIT 10000000
#define PMC_UPDATE_INTERVAL (60 * NS_PER_SEC)
struct clock;
static int update_sync_offset(struct clock *clock, int64_t offset, uint64_t ts);
static clockid_t clock_open(char *device)
{
struct sk_ts_info ts_info;
char phc_device[16];
int clkid;
/* check if device is CLOCK_REALTIME */
if (!strcasecmp(device, "CLOCK_REALTIME"))
return CLOCK_REALTIME;
/* check if device is valid phc device */
clkid = phc_open(device);
if (clkid != CLOCK_INVALID)
return clkid;
/* check if device is a valid ethernet device */
if (sk_get_ts_info(device, &ts_info) || !ts_info.valid) {
fprintf(stderr, "unknown clock %s: %m\n", device);
return CLOCK_INVALID;
}
if (ts_info.phc_index < 0) {
fprintf(stderr, "interface %s does not have a PHC\n", device);
return CLOCK_INVALID;
}
sprintf(phc_device, "/dev/ptp%d", ts_info.phc_index);
clkid = phc_open(phc_device);
if (clkid == CLOCK_INVALID)
fprintf(stderr, "cannot open %s: %m\n", device);
return clkid;
}
static int read_phc(clockid_t clkid, clockid_t sysclk, int readings,
int64_t *offset, uint64_t *ts, int64_t *delay)
{
struct timespec tdst1, tdst2, tsrc;
int i;
int64_t interval, best_interval = INT64_MAX;
/* Pick the quickest clkid reading. */
for (i = 0; i < readings; i++) {
if (clock_gettime(sysclk, &tdst1) ||
clock_gettime(clkid, &tsrc) ||
clock_gettime(sysclk, &tdst2)) {
pr_err("failed to read clock: %m");
return 0;
}
interval = (tdst2.tv_sec - tdst1.tv_sec) * NS_PER_SEC +
tdst2.tv_nsec - tdst1.tv_nsec;
if (best_interval > interval) {
best_interval = interval;
*offset = (tdst1.tv_sec - tsrc.tv_sec) * NS_PER_SEC +
tdst1.tv_nsec - tsrc.tv_nsec + interval / 2;
*ts = tdst2.tv_sec * NS_PER_SEC + tdst2.tv_nsec;
}
}
*delay = best_interval;
return 1;
}
struct clock {
clockid_t clkid;
struct servo *servo;
enum servo_state servo_state;
const char *source_label;
struct stats *offset_stats;
struct stats *freq_stats;
struct stats *delay_stats;
unsigned int stats_max_count;
int sync_offset;
int sync_offset_direction;
int leap;
int leap_set;
int kernel_leap;
struct pmc *pmc;
int pmc_ds_idx;
int pmc_ds_requested;
uint64_t pmc_last_update;
struct clockcheck *sanity_check;
};
static void update_clock_stats(struct clock *clock,
int64_t offset, double freq, int64_t delay)
{
struct stats_result offset_stats, freq_stats, delay_stats;
stats_add_value(clock->offset_stats, offset);
stats_add_value(clock->freq_stats, freq);
if (delay >= 0)
stats_add_value(clock->delay_stats, delay);
if (stats_get_num_values(clock->offset_stats) < clock->stats_max_count)
return;
stats_get_result(clock->offset_stats, &offset_stats);
stats_get_result(clock->freq_stats, &freq_stats);
if (!stats_get_result(clock->delay_stats, &delay_stats)) {
pr_info("rms %4.0f max %4.0f "
"freq %+6.0f +/- %3.0f "
"delay %5.0f +/- %3.0f",
offset_stats.rms, offset_stats.max_abs,
freq_stats.mean, freq_stats.stddev,
delay_stats.mean, delay_stats.stddev);
} else {
pr_info("rms %4.0f max %4.0f "
"freq %+6.0f +/- %3.0f",
offset_stats.rms, offset_stats.max_abs,
freq_stats.mean, freq_stats.stddev);
}
stats_reset(clock->offset_stats);
stats_reset(clock->freq_stats);
stats_reset(clock->delay_stats);
}
static void update_clock(struct clock *clock,
int64_t offset, uint64_t ts, int64_t delay)
{
enum servo_state state;
double ppb;
if (update_sync_offset(clock, offset, ts))
return;
if (clock->sync_offset_direction)
offset += clock->sync_offset * NS_PER_SEC *
clock->sync_offset_direction;
if (clock->sanity_check && clockcheck_sample(clock->sanity_check, ts))
servo_reset(clock->servo);
ppb = servo_sample(clock->servo, offset, ts, &state);
clock->servo_state = state;
switch (state) {
case SERVO_UNLOCKED:
break;
case SERVO_JUMP:
clockadj_step(clock->clkid, -offset);
if (clock->sanity_check)
clockcheck_step(clock->sanity_check, -offset);
/* Fall through. */
case SERVO_LOCKED:
clockadj_set_freq(clock->clkid, -ppb);
if (clock->clkid == CLOCK_REALTIME)
sysclk_set_sync();
if (clock->sanity_check)
clockcheck_set_freq(clock->sanity_check, -ppb);
break;
}
if (clock->offset_stats) {
update_clock_stats(clock, offset, ppb, delay);
} else {
if (delay >= 0) {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f "
"delay %6" PRId64,
clock->source_label, offset, state, ppb, delay);
} else {
pr_info("%s offset %9" PRId64 " s%d freq %+7.0f",
clock->source_label, offset, state, ppb);
}
}
}
static void enable_pps_output(clockid_t src)
{
int enable = 1;
if (!phc_has_pps(src))
return;
if (ioctl(CLOCKID_TO_FD(src), PTP_ENABLE_PPS, enable) < 0)
pr_warning("failed to enable PPS output");
}
static int read_pps(int fd, int64_t *offset, uint64_t *ts)
{
struct pps_fdata pfd;
pfd.timeout.sec = 10;
pfd.timeout.nsec = 0;
pfd.timeout.flags = ~PPS_TIME_INVALID;
if (ioctl(fd, PPS_FETCH, &pfd)) {
pr_err("failed to fetch PPS: %m");
return 0;
}
*ts = pfd.info.assert_tu.sec * NS_PER_SEC;
*ts += pfd.info.assert_tu.nsec;
*offset = *ts % NS_PER_SEC;
if (*offset > NS_PER_SEC / 2)
*offset -= NS_PER_SEC;
return 1;
}
static int do_pps_loop(struct clock *clock, int fd,
clockid_t src, int n_readings)
{
int64_t pps_offset, phc_offset, phc_delay;
uint64_t pps_ts, phc_ts;
clock->source_label = "pps";
if (src == CLOCK_INVALID) {
/* The sync offset can't be applied with PPS alone. */
clock->sync_offset_direction = 0;
} else {
enable_pps_output(src);
}
while (1) {
if (!read_pps(fd, &pps_offset, &pps_ts)) {
continue;
}
/* If a PHC is available, use it to get the whole number
of seconds in the offset and PPS for the rest. */
if (src != CLOCK_INVALID) {
if (!read_phc(src, clock->clkid, n_readings,
&phc_offset, &phc_ts, &phc_delay))
return -1;
/* Convert the time stamp to the PHC time. */
phc_ts -= phc_offset;
/* Check if it is close to the start of the second. */
if (phc_ts % NS_PER_SEC > PHC_PPS_OFFSET_LIMIT) {
pr_warning("PPS is not in sync with PHC"
" (0.%09lld)", phc_ts % NS_PER_SEC);
continue;
}
phc_ts = phc_ts / NS_PER_SEC * NS_PER_SEC;
pps_offset = pps_ts - phc_ts;
}
update_clock(clock, pps_offset, pps_ts, -1);
}
close(fd);
return 0;
}
static int do_sysoff_loop(struct clock *clock, clockid_t src,
struct timespec *interval, int n_readings)
{
uint64_t ts;
int64_t offset, delay;
int err = 0, fd = CLOCKID_TO_FD(src);
clock->source_label = "sys";
while (1) {
clock_nanosleep(CLOCK_MONOTONIC, 0, interval, NULL);
if (sysoff_measure(fd, n_readings, &offset, &ts, &delay)) {
err = -1;
break;
}
update_clock(clock, offset, ts, delay);
}
return err;
}
static int do_phc_loop(struct clock *clock, clockid_t src,
struct timespec *interval, int n_readings)
{
uint64_t ts;
int64_t offset, delay;
clock->source_label = "phc";
while (1) {
clock_nanosleep(CLOCK_MONOTONIC, 0, interval, NULL);
if (!read_phc(src, clock->clkid, n_readings,
&offset, &ts, &delay)) {
continue;
}
update_clock(clock, offset, ts, delay);
}
return 0;
}
static int is_msg_mgt(struct ptp_message *msg)
{
struct TLV *tlv;
if (msg_type(msg) != MANAGEMENT)
return 0;
if (management_action(msg) != RESPONSE)
return 0;
if (msg->tlv_count != 1)
return 0;
tlv = (struct TLV *) msg->management.suffix;
if (tlv->type != TLV_MANAGEMENT)
return 0;
return 1;
}
static int get_mgt_id(struct ptp_message *msg)
{
struct management_tlv *mgt = (struct management_tlv *) msg->management.suffix;
return mgt->id;
}
static void *get_mgt_data(struct ptp_message *msg)
{
struct management_tlv *mgt = (struct management_tlv *) msg->management.suffix;
return mgt->data;
}
static int init_pmc(struct clock *clock, int domain_number)
{
clock->pmc = pmc_create(TRANS_UDS, "/var/run/phc2sys", 0,
domain_number, 0, 1);
if (!clock->pmc) {
pr_err("failed to create pmc");
return -1;
}
return 0;
}
static int run_pmc(struct clock *clock, int timeout,
int wait_sync, int get_utc_offset)
{
struct ptp_message *msg;
struct timePropertiesDS *tds;
void *data;
#define N_FD 1
struct pollfd pollfd[N_FD];
int cnt, ds_done;
#define N_ID 2
int ds_ids[N_ID] = {
PORT_DATA_SET,
TIME_PROPERTIES_DATA_SET
};
while (clock->pmc_ds_idx < N_ID) {
/* Check if the data set is really needed. */
if ((ds_ids[clock->pmc_ds_idx] == PORT_DATA_SET &&
!wait_sync) ||
(ds_ids[clock->pmc_ds_idx] == TIME_PROPERTIES_DATA_SET &&
!get_utc_offset)) {
clock->pmc_ds_idx++;
continue;
}
pollfd[0].fd = pmc_get_transport_fd(clock->pmc);
pollfd[0].events = POLLIN|POLLPRI;
if (!clock->pmc_ds_requested)
pollfd[0].events |= POLLOUT;
cnt = poll(pollfd, N_FD, timeout);
if (cnt < 0) {
pr_err("poll failed");
return -1;
}
if (!cnt) {
/* Request the data set again in the next run. */
clock->pmc_ds_requested = 0;
return 0;
}
/* Send a new request if there are no pending messages. */
if ((pollfd[0].revents & POLLOUT) &&
!(pollfd[0].revents & (POLLIN|POLLPRI))) {
pmc_send_get_action(clock->pmc,
ds_ids[clock->pmc_ds_idx]);
clock->pmc_ds_requested = 1;
}
if (!(pollfd[0].revents & (POLLIN|POLLPRI)))
continue;
msg = pmc_recv(clock->pmc);
if (!msg)
continue;
if (!is_msg_mgt(msg) ||
get_mgt_id(msg) != ds_ids[clock->pmc_ds_idx]) {
msg_put(msg);
continue;
}
data = get_mgt_data(msg);
ds_done = 0;
switch (get_mgt_id(msg)) {
case PORT_DATA_SET:
switch (((struct portDS *)data)->portState) {
case PS_MASTER:
case PS_SLAVE:
ds_done = 1;
break;
}
break;
case TIME_PROPERTIES_DATA_SET:
tds = (struct timePropertiesDS *)data;
if (tds->flags & PTP_TIMESCALE) {
clock->sync_offset = tds->currentUtcOffset;
if (tds->flags & LEAP_61)
clock->leap = 1;
else if (tds->flags & LEAP_59)
clock->leap = -1;
else
clock->leap = 0;
}
ds_done = 1;
break;
}
if (ds_done) {
/* Proceed with the next data set. */
clock->pmc_ds_idx++;
clock->pmc_ds_requested = 0;
}
msg_put(msg);
}
clock->pmc_ds_idx = 0;
return 1;
}
static void close_pmc(struct clock *clock)
{
pmc_destroy(clock->pmc);
clock->pmc = NULL;
}
static int update_sync_offset(struct clock *clock, int64_t offset, uint64_t ts)
{
int clock_leap;
if (clock->pmc &&
!(ts > clock->pmc_last_update &&
ts - clock->pmc_last_update < PMC_UPDATE_INTERVAL)) {
if (run_pmc(clock, 0, 0, 1) > 0)
clock->pmc_last_update = ts;
}
/* Handle leap seconds. */
if (!clock->leap && !clock->leap_set)
return 0;
/* If the system clock is the master clock, get a time stamp from
it, as it is the clock which will include the leap second. */
if (clock->clkid != CLOCK_REALTIME) {
struct timespec tp;
if (clock_gettime(CLOCK_REALTIME, &tp)) {
pr_err("failed to read clock: %m");
return -1;
}
ts = tp.tv_sec * NS_PER_SEC + tp.tv_nsec;
}
/* If the clock will be stepped, the time stamp has to be the
target time. Ignore possible 1 second error in UTC offset. */
if (clock->clkid == CLOCK_REALTIME &&
clock->servo_state == SERVO_UNLOCKED) {
ts -= offset + clock->sync_offset * NS_PER_SEC *
clock->sync_offset_direction;
}
/* Suspend clock updates in the last second before midnight. */
if (is_utc_ambiguous(ts)) {
pr_info("clock update suspended due to leap second");
return -1;
}
clock_leap = leap_second_status(ts, clock->leap_set,
&clock->leap, &clock->sync_offset);
if (clock->leap_set != clock_leap) {
/* Only the system clock can leap. */
if (clock->clkid == CLOCK_REALTIME && clock->kernel_leap)
sysclk_set_leap(clock_leap);
clock->leap_set = clock_leap;
}
return 0;
}
static void usage(char *progname)
{
fprintf(stderr,
"\n"
"usage: %s [options]\n\n"
" -c [dev|name] slave clock (CLOCK_REALTIME)\n"
" -d [dev] master PPS device\n"
" -s [dev|name] master clock\n"
" -P [kp] proportional constant (0.7)\n"
" -I [ki] integration constant (0.3)\n"
" -S [step] step threshold (disabled)\n"
" -F [step] step threshold only on start (0.0000001)\n"
" -R [rate] slave clock update rate in HZ (1.0)\n"
" -N [num] number of master clock readings per update (5)\n"
" -O [offset] slave-master time offset (0)\n"
" -L [limit] sanity frequency limit in ppb (200000000)\n"
" -u [num] number of clock updates in summary stats (0)\n"
" -w wait for ptp4l\n"
" -n [num] domain number (0)\n"
" -x apply leap seconds by servo instead of kernel\n"
" -l [num] set the logging level to 'num' (6)\n"
" -m print messages to stdout\n"
" -q do not print messages to the syslog\n"
" -v prints the software version and exits\n"
" -h prints this message and exits\n"
"\n",
progname);
}
int main(int argc, char *argv[])
{
char *progname;
clockid_t src = CLOCK_INVALID;
int c, domain_number = 0, phc_readings = 5, pps_fd = -1;
int max_ppb, r, wait_sync = 0, forced_sync_offset = 0;
int print_level = LOG_INFO, use_syslog = 1, verbose = 0;
int sanity_freq_limit = 200000000;
double ppb, phc_interval = 1.0, phc_rate;
struct timespec phc_interval_tp;
struct clock dst_clock = {
.clkid = CLOCK_REALTIME,
.servo_state = SERVO_UNLOCKED,
.kernel_leap = 1,
};
configured_pi_kp = KP;
configured_pi_ki = KI;
/* Process the command line arguments. */
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
while (EOF != (c = getopt(argc, argv,
"c:d:s:P:I:S:F:R:N:O:L:i:u:wn:xl:mqvh"))) {
switch (c) {
case 'c':
dst_clock.clkid = clock_open(optarg);
break;
case 'd':
pps_fd = open(optarg, O_RDONLY);
if (pps_fd < 0) {
fprintf(stderr,
"cannot open '%s': %m\n", optarg);
return -1;
}
break;
case 'i':
fprintf(stderr,
"'-i' has been deprecated. please use '-s' instead.\n");
case 's':
src = clock_open(optarg);
break;
case 'P':
if (get_arg_val_d(c, optarg, &configured_pi_kp,
0.0, DBL_MAX))
return -1;
break;
case 'I':
if (get_arg_val_d(c, optarg, &configured_pi_ki,
0.0, DBL_MAX))
return -1;
break;
case 'S':
if (get_arg_val_d(c, optarg, &configured_pi_offset,
0.0, DBL_MAX))
return -1;
break;
case 'F':
if (get_arg_val_d(c, optarg, &configured_pi_f_offset,
0.0, DBL_MAX))
return -1;
break;
case 'R':
if (get_arg_val_d(c, optarg, &phc_rate, 1e-9, DBL_MAX))
return -1;
phc_interval = 1.0 / phc_rate;
break;
case 'N':
if (get_arg_val_i(c, optarg, &phc_readings, 1, INT_MAX))
return -1;
break;
case 'O':
if (get_arg_val_i(c, optarg, &dst_clock.sync_offset,
INT_MIN, INT_MAX))
return -1;
dst_clock.sync_offset_direction = -1;
forced_sync_offset = 1;
break;
case 'L':
if (get_arg_val_i(c, optarg, &sanity_freq_limit, 0, INT_MAX))
return -1;
break;
case 'u':
if (get_arg_val_ui(c, optarg, &dst_clock.stats_max_count,
0, UINT_MAX))
return -1;
break;
case 'w':
wait_sync = 1;
break;
case 'n':
if (get_arg_val_i(c, optarg, &domain_number, 0, 255))
return -1;
break;
case 'x':
dst_clock.kernel_leap = 0;
break;
case 'l':
if (get_arg_val_i(c, optarg, &print_level,
PRINT_LEVEL_MIN, PRINT_LEVEL_MAX))
return -1;
break;
case 'm':
verbose = 1;
break;
case 'q':
use_syslog = 0;
break;
case 'v':
version_show(stdout);
return 0;
case 'h':
usage(progname);
return 0;
default:
goto bad_usage;
}
}
if (pps_fd < 0 && src == CLOCK_INVALID) {
fprintf(stderr,
"valid source clock must be selected.\n");
goto bad_usage;
}
if (dst_clock.clkid == CLOCK_INVALID) {
fprintf(stderr,
"valid destination clock must be selected.\n");
goto bad_usage;
}
if (pps_fd >= 0 && dst_clock.clkid != CLOCK_REALTIME) {
fprintf(stderr,
"cannot use a pps device unless destination is CLOCK_REALTIME\n");
goto bad_usage;
}
if (!wait_sync && !forced_sync_offset) {
fprintf(stderr,
"time offset must be specified using -w or -O\n");
goto bad_usage;
}
if (dst_clock.stats_max_count > 0) {
dst_clock.offset_stats = stats_create();
dst_clock.freq_stats = stats_create();
dst_clock.delay_stats = stats_create();
if (!dst_clock.offset_stats ||
!dst_clock.freq_stats ||
!dst_clock.delay_stats) {
fprintf(stderr, "failed to create stats");
return -1;
}
}
if (sanity_freq_limit) {
dst_clock.sanity_check = clockcheck_create(sanity_freq_limit);
if (!dst_clock.sanity_check) {
fprintf(stderr, "failed to create clock check");
return -1;
}
}
print_set_progname(progname);
print_set_verbose(verbose);
print_set_syslog(use_syslog);
print_set_level(print_level);
if (wait_sync) {
if (init_pmc(&dst_clock, domain_number))
return -1;
while (1) {
r = run_pmc(&dst_clock, 1000,
wait_sync, !forced_sync_offset);
if (r < 0)
return -1;
else if (r > 0)
break;
else
pr_notice("Waiting for ptp4l...");
}
if (!forced_sync_offset) {
if (src != CLOCK_REALTIME &&
dst_clock.clkid == CLOCK_REALTIME)
dst_clock.sync_offset_direction = 1;
else if (src == CLOCK_REALTIME &&
dst_clock.clkid != CLOCK_REALTIME)
dst_clock.sync_offset_direction = -1;
else
dst_clock.sync_offset_direction = 0;
}
if (forced_sync_offset || !dst_clock.sync_offset_direction)
close_pmc(&dst_clock);
}
ppb = clockadj_get_freq(dst_clock.clkid);
/* The reading may silently fail and return 0, reset the frequency to
make sure ppb is the actual frequency of the clock. */
clockadj_set_freq(dst_clock.clkid, ppb);
if (dst_clock.clkid == CLOCK_REALTIME) {
sysclk_set_leap(0);
max_ppb = sysclk_max_freq();
} else {
max_ppb = phc_max_adj(dst_clock.clkid);
if (!max_ppb) {
pr_err("clock is not adjustable");
return -1;
}
}
dst_clock.servo = servo_create(CLOCK_SERVO_PI, -ppb, max_ppb, 0);
if (pps_fd >= 0) {
servo_sync_interval(dst_clock.servo, 1.0);
return do_pps_loop(&dst_clock, pps_fd, src, phc_readings);
}
servo_sync_interval(dst_clock.servo, phc_interval);
phc_interval_tp.tv_sec = phc_interval;
phc_interval_tp.tv_nsec = (phc_interval - phc_interval_tp.tv_sec) * 1e9;
if (dst_clock.clkid == CLOCK_REALTIME && src != CLOCK_REALTIME &&
SYSOFF_SUPPORTED == sysoff_probe(CLOCKID_TO_FD(src), phc_readings))
return do_sysoff_loop(&dst_clock, src, &phc_interval_tp,
phc_readings);
return do_phc_loop(&dst_clock, src, &phc_interval_tp, phc_readings);
bad_usage:
usage(progname);
return -1;
}