All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning.
-
Changed the default option for
create_distplot
in the figure factory fromprobability
toprobability density
and also added thehistnorm
parameter to allow the user to choose between the two options. Note: This is a backwards incompatible change. -
Updated plotly.min.js so the offline mode is using plotly.js v1.12.0
- Light position is now configurable in surface traces
- surface and mesh3d lighting attributes are now accompanied with comprehensive descriptions
- Version 1.9.13 fixed an issue in offline mode where if you ran
init_notebook_mode
more than once the function would skip importing (because it saw that it had already imported the library) but then accidentally clear plotly.js from the DOM. This meant that if you raninit_notebook_mode
more than once, your graphs would not appear when you refreshed the page. Version 1.9.13 solved this issue by injecting plotly.js with every iplot call. While this works, it also injects the library excessively, causing notebooks to have multiple versions of plotly.js inline in the DOM, potentially making notebooks with manyiplot
calls very large. Version 1.10.0 brings back the requirement to callinit_notebook_mode
before making aniplot
call. It makesinit_notebook_mode
idempotent: you can call it multiple times without worrying about losing your plots on refresh.
- Fixed issue in offline mode related to the inability to reload plotly.js on page refresh and extra init_notebook_mode calls.
- SSL support for streaming.
- The FigureFactory can now create scatter plot matrices with
.create_scatterplotmatrix
. Check it out with:
import plotly.tools as tls
help(tls.FigureFactory.create_scatterplotmatrix)
- Updated plotly.min.js so the offline mode is using plotly.js v1.10.0
- Added beta versions of two new 2D WebGL trace types: heatmapgl, contourgl
- Added fills for scatterternary traces
- Added configurable shapes layer positioning with the shape attribute:
layer
- Fixed
require is not defined
issue when plotting offline outside of Ipython Notebooks.
- Error no longer results from a "Run All" cells when working in a Jupyter Notebook.
- Updated plotly.min.js so offline is using plotly.js v1.9.0
- Added Ternary plots with support for scatter traces (trace type
scatterternary
, currently only available in offline mode) - For comprehensive update list see the plotly.js CHANGELOG
- Added Ternary plots with support for scatter traces (trace type
- Offline mode will no longer delete the Jupyter Notebook's require, requirejs, and define variables.
- Updated plotly.min.js so offline is using plotly.js v1.8.0
- Added range selector functionality for cartesian plots
- Added range slider functionality for scatter traces
- Added custom surface color functionality
- Added ability to subplot multiple graph types (SVG cartesian, 3D, maps, pie charts)
- For comprehensive update list see the plotly.js CHANGELOG
- Updated plotly.min.js so offline is using plotly.js v1.5.2
- Offline matplotlib to Plotly figure conversion. Use
offline.plot_mpl
to convert and plot a matplotlib figure as a Plotly figure independently of IPython/Jupyter notebooks or useoffline.iplot_mpl
to convert and plot inside of IPython/Jupyter notebooks. Additionally, useoffline.enable_mpl_offline
to convert and plot all matplotlib figures as plotly figures inside an IPython/Jupyter notebook. See examples below:
An example independent of IPython/Jupyter notebooks:
from plotly.offline import init_notebook_mode, plot_mpl
import matplotlib.pyplot as plt
init_notebook_mode()
fig = plt.figure()
x = [10, 15, 20]
y = [100, 150, 200]
plt.plot(x, y, "o")
plot_mpl(fig)
An example inside of an IPython/Jupyter notebook:
from plotly.offline import init_notebook_mode, iplot_mpl
import matplotlib.pyplot as plt
init_notebook_mode()
fig = plt.figure()
x = [10, 15, 20]
y = [100, 150, 200]
plt.plot(x, y, "o")
iplot_mpl(fig)
An example of enabling all matplotlib figures to be converted to Plotly figures inside of an IPython/Jupyter notebook:
from plotly.offline import init_notebook_mode, enable_mpl_offline
import matplotlib.pyplot as plt
init_notebook_mode()
enable_mpl_offline()
fig = plt.figure()
x = [10, 15, 20, 25, 30]
y = [100, 250, 200, 150, 300]
plt.plot(x, y, "o")
fig
- Offline plotting now works outside of the IPython/Jupyter notebook. Here's an example:
from plotly.offline import plot
from plotly.graph_objs import Scatter
plot([Scatter(x=[1, 2, 3], y=[3, 1, 6])])
This command works entirely locally. It writes to a local HTML file with the necessary plotly.js code to render the graph. Your browser will open the file after you make the call.
The call signature is very similar to plotly.offline.iplot
and plotly.plotly.plot
and plotly.plotly.iplot
, so you can basically use these commands interchangeably.
If you want to publish your graphs to the web, use plotly.plotly.plot
, as in:
import plotly.plotly as py
from plotly.graph_objs import Scatter
py.plot([Scatter(x=[1, 2, 3], y=[5, 1, 6])])
This will upload the graph to your online plotly account.
- Check for
no_proxy
when determining if the streaming request should pass through a proxy in the chunked_requests submodule. Example:no_proxy='my_stream_url'
andhttp_proxy=my.proxy.ip:1234
, thenmy_stream_url
will not get proxied. Previously it would.
Bug Fix: Previously, the "Export to plot.ly" link on
offline charts would export your figures to the
public plotly cloud, even if your config_file
(set with plotly.tools.set_config_file
to the file
~/.plotly/.config
) set plotly_domain
to a plotly enterprise
URL like https://plotly.acme.com
.
This is now fixed. Your graphs will be exported to your
plotly_domain
if it is set.
- The FigureFactory can now create annotated heatmaps with
.create_annotated_heatmap
. Check it out with:
import plotly.tools as tls
help(tls.FigureFactory.create_annotated_heatmap)
- The FigureFactory can now create tables with
.create_table
.
import plotly.tools as tls
help(tls.FigureFactory.create_table)
- Previously, using plotly offline required a paid license.
No more:
plotly.js
is now shipped inside this package to allow unlimited free use of plotly inside the ipython notebook environment. Theplotly.js
library that is included in this package is free, open source, and maintained independently on GitHub at https://github.com/plotly/plotly.js. - The
plotly.js
bundle that is required for offline use is no longer downloaded and installed independently from this package:plotly.offline.download_plotlyjs
is deprecated. - New versions of
plotly.js
will be tested and incorporated into this package as new versioned pip releases;plotly.js
is not automatically kept in sync with this package.
- Big data warning mentions
plotly.graph_objs.Scattergl
as possible solution.
- If you're behind a proxy, you can make requests by setting the environmental variable HTTP_PROXY and HTTPS_PROXY (http://docs.python-requests.org/en/v1.0.4/user/advanced/#proxies). This didn't work for streaming, but now it does.
- Sometimes creating a graph with a private share-key doesn't work - the graph is private, but not accessible with the share key. Now we check to see if it didn't work, and re-try a few times until it does.
- The FigureFactory can now create dendrogram plots with
.create_dendrogram
.
- Saving "world_readable" to your config file via
plotly.tools.set_config
actually works.
- You can also save
auto_open
andsharing
to the config file so that you can forget these keyword argument inpy.iplot
andpy.plot
.
- Fixed validation errors (validate=False workaround no longer required)
- Auto-sync API request on import to get the latest schema from Plotly
.
-access for nested attributes in plotly graph objects- General
.help()
method for plotly graph objects - Specific attribute
.help(<attribute>)
also included
- No more is streamable, streaming validation.
- Fixed typos in
plot
andiplot
documentations
- CHANGELOG
sharing
keyword argument forplotly.plotly.plot
andplotly.plotly.iplot
with options'public' | 'private' | 'secret'
to control the privacy of the charts. Depreciatesworld_readable
- If the response from
plot
oriplot
contains an error message, raise an exception
-
height
andwidth
are no longer accepted iniplot
. Just stick them into your figure's layout instead, it'll be more consistent when you view it outside of the IPython notebook environment. So, instead of this:py.iplot([{'x': [1, 2, 3], 'y': [3, 1, 5]}], height=800)
do this:
py.iplot({ 'data': [{'x': [1, 2, 3], 'y': [3, 1, 5]}], 'layout': {'height': 800} })
- The height of the graph in
iplot
respects the figure's height in layout