forked from lindermanlab/S5
-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_helpers.py
436 lines (371 loc) · 15.3 KB
/
train_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from functools import partial
import jax
import jax.numpy as np
from jax.nn import one_hot
from tqdm import tqdm
from flax.training import train_state
import optax
from typing import Any, Tuple
# LR schedulers
def linear_warmup(step, base_lr, end_step, lr_min=None):
return base_lr * (step + 1) / end_step
def cosine_annealing(step, base_lr, end_step, lr_min=1e-6):
# https://github.com/deepmind/optax/blob/master/optax/_src/schedule.py#L207#L240
count = np.minimum(step, end_step)
cosine_decay = 0.5 * (1 + np.cos(np.pi * count / end_step))
decayed = (base_lr - lr_min) * cosine_decay + lr_min
return decayed
def reduce_lr_on_plateau(input, factor=0.2, patience=20, lr_min=1e-6):
lr, ssm_lr, count, new_acc, opt_acc = input
if new_acc > opt_acc:
count = 0
opt_acc = new_acc
else:
count += 1
if count > patience:
lr = factor * lr
ssm_lr = factor * ssm_lr
count = 0
if lr < lr_min:
lr = lr_min
if ssm_lr < lr_min:
ssm_lr = lr_min
return lr, ssm_lr, count, opt_acc
def constant_lr(step, base_lr, end_step, lr_min=None):
return base_lr
def update_learning_rate_per_step(lr_params, state):
decay_function, ssm_lr, lr, step, end_step, opt_config, lr_min = lr_params
# Get decayed value
lr_val = decay_function(step, lr, end_step, lr_min)
ssm_lr_val = decay_function(step, ssm_lr, end_step, lr_min)
step += 1
# Update state
state.opt_state.inner_states['regular'].inner_state.hyperparams['learning_rate'] = np.array(lr_val, dtype=np.float32)
state.opt_state.inner_states['ssm'].inner_state.hyperparams['learning_rate'] = np.array(ssm_lr_val, dtype=np.float32)
if opt_config in ["BandCdecay"]:
# In this case we are applying the ssm learning rate to B, even though
# we are also using weight decay on B
state.opt_state.inner_states['none'].inner_state.hyperparams['learning_rate'] = np.array(ssm_lr_val, dtype=np.float32)
return state, step
def map_nested_fn(fn):
"""
Recursively apply `fn to the key-value pairs of a nested dict / pytree.
We use this for some of the optax definitions below.
"""
def map_fn(nested_dict):
return {
k: (map_fn(v) if hasattr(v, "keys") else fn(k, v))
for k, v in nested_dict.items()
}
return map_fn
def create_train_state(model_cls,
rng,
padded,
retrieval,
in_dim=1,
bsz=128,
seq_len=784,
weight_decay=0.01,
batchnorm=False,
opt_config="standard",
ssm_lr=1e-3,
lr=1e-3,
dt_global=False
):
"""
Initializes the training state using optax
:param model_cls:
:param rng:
:param padded:
:param retrieval:
:param in_dim:
:param bsz:
:param seq_len:
:param weight_decay:
:param batchnorm:
:param opt_config:
:param ssm_lr:
:param lr:
:param dt_global:
:return:
"""
if padded:
if retrieval:
# For retrieval tasks we have two different sets of "documents"
dummy_input = (np.ones((2*bsz, seq_len, in_dim)), np.ones(2*bsz))
integration_timesteps = np.ones((2*bsz, seq_len,))
else:
dummy_input = (np.ones((bsz, seq_len, in_dim)), np.ones(bsz))
integration_timesteps = np.ones((bsz, seq_len,))
else:
dummy_input = np.ones((bsz, seq_len, in_dim))
integration_timesteps = np.ones((bsz, seq_len, ))
model = model_cls(training=True)
init_rng, dropout_rng = jax.random.split(rng, num=2)
variables = model.init({"params": init_rng,
"dropout": dropout_rng},
dummy_input, integration_timesteps,
)
if batchnorm:
params = variables["params"].unfreeze()
batch_stats = variables["batch_stats"]
else:
params = variables["params"].unfreeze()
# Note: `unfreeze()` is for using Optax.
if opt_config in ["standard"]:
"""This option applies weight decay to C, but B is kept with the
SSM parameters with no weight decay.
"""
print("configuring standard optimization setup")
if dt_global:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["B", "Lambda_re", "Lambda_im", "norm"]
else ("none" if k in [] else "regular")
)
else:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["B", "Lambda_re", "Lambda_im", "log_step", "norm"]
else ("none" if k in [] else "regular")
)
tx = optax.multi_transform(
{
"none": optax.inject_hyperparams(optax.sgd)(learning_rate=0.0),
"ssm": optax.inject_hyperparams(optax.adam)(learning_rate=ssm_lr),
"regular": optax.inject_hyperparams(optax.adamw)(learning_rate=lr,
weight_decay=weight_decay),
},
ssm_fn,
)
elif opt_config in ["BandCdecay"]:
"""This option applies weight decay to both C and B. Note we still apply the
ssm learning rate to B.
"""
print("configuring optimization with B in AdamW setup")
if dt_global:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["Lambda_re", "Lambda_im", "norm"]
else ("none" if k in ["B"] else "regular")
)
else:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["Lambda_re", "Lambda_im", "log_step", "norm"]
else ("none" if k in ["B"] else "regular")
)
tx = optax.multi_transform(
{
"none": optax.inject_hyperparams(optax.adamw)(learning_rate=ssm_lr,
weight_decay=weight_decay),
"ssm": optax.inject_hyperparams(optax.adam)(learning_rate=ssm_lr),
"regular": optax.inject_hyperparams(optax.adamw)(learning_rate=lr,
weight_decay=weight_decay),
},
ssm_fn,
)
elif opt_config in ["BfastandCdecay"]:
"""This option applies weight decay to both C and B. Note here we apply
faster global learning rate to B also.
"""
print("configuring optimization with B in AdamW setup with lr")
if dt_global:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["Lambda_re", "Lambda_im", "norm"]
else ("none" if k in [] else "regular")
)
else:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["Lambda_re", "Lambda_im", "log_step", "norm"]
else ("none" if k in [] else "regular")
)
tx = optax.multi_transform(
{
"none": optax.inject_hyperparams(optax.adamw)(learning_rate=0.0),
"ssm": optax.inject_hyperparams(optax.adam)(learning_rate=ssm_lr),
"regular": optax.inject_hyperparams(optax.adamw)(learning_rate=lr,
weight_decay=weight_decay),
},
ssm_fn,
)
elif opt_config in ["noBCdecay"]:
"""This option does not apply weight decay to B or C. C is included
with the SSM parameters and uses ssm learning rate.
"""
print("configuring optimization with C not in AdamW setup")
if dt_global:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["B", "C", "C1", "C2", "D",
"Lambda_re", "Lambda_im", "norm"]
else ("none" if k in [] else "regular")
)
else:
ssm_fn = map_nested_fn(
lambda k, _: "ssm"
if k in ["B", "C", "C1", "C2", "D",
"Lambda_re", "Lambda_im", "log_step", "norm"]
else ("none" if k in [] else "regular")
)
tx = optax.multi_transform(
{
"none": optax.inject_hyperparams(optax.sgd)(learning_rate=0.0),
"ssm": optax.inject_hyperparams(optax.adam)(learning_rate=ssm_lr),
"regular": optax.inject_hyperparams(optax.adamw)(learning_rate=lr,
weight_decay=weight_decay),
},
ssm_fn,
)
fn_is_complex = lambda x: x.dtype in [np.complex64, np.complex128]
param_sizes = map_nested_fn(lambda k, param: param.size * (2 if fn_is_complex(param) else 1))(params)
print(f"[*] Trainable Parameters: {sum(jax.tree_leaves(param_sizes))}")
if batchnorm:
class TrainState(train_state.TrainState):
batch_stats: Any
return TrainState.create(apply_fn=model.apply, params=params, tx=tx, batch_stats=batch_stats)
else:
return train_state.TrainState.create(apply_fn=model.apply, params=params, tx=tx)
# Train and eval steps
@partial(np.vectorize, signature="(c),()->()")
def cross_entropy_loss(logits, label):
one_hot_label = jax.nn.one_hot(label, num_classes=logits.shape[0])
return -np.sum(one_hot_label * logits)
@partial(np.vectorize, signature="(c),()->()")
def compute_accuracy(logits, label):
return np.argmax(logits) == label
def prep_batch(batch: tuple,
seq_len: int,
in_dim: int) -> Tuple[np.ndarray, np.ndarray, np.array]:
"""
Take a batch and convert it to a standard x/y format.
:param batch: (x, y, aux_data) as returned from dataloader.
:param seq_len: (int) length of sequence.
:param in_dim: (int) dimension of input.
:return:
"""
if len(batch) == 2:
inputs, targets = batch
aux_data = {}
elif len(batch) == 3:
inputs, targets, aux_data = batch
else:
raise RuntimeError("Err... not sure what I should do... Unhandled data type. ")
# Convert to JAX.
inputs = np.asarray(inputs.numpy())
# Grab lengths from aux if it is there.
lengths = aux_data.get('lengths', None)
# Make all batches have same sequence length
num_pad = seq_len - inputs.shape[1]
if num_pad > 0:
# Assuming vocab padding value is zero
inputs = np.pad(inputs, ((0, 0), (0, num_pad)), 'constant', constant_values=(0,))
# Inputs is either [n_batch, seq_len] or [n_batch, seq_len, in_dim].
# If there are not three dimensions and trailing dimension is not equal to in_dim then
# transform into one-hot. This should be a fairly reliable fix.
if (inputs.ndim < 3) and (inputs.shape[-1] != in_dim):
inputs = one_hot(np.asarray(inputs), in_dim)
# If there are lengths, bundle them up.
if lengths is not None:
lengths = np.asarray(lengths.numpy())
full_inputs = (inputs.astype(float), lengths.astype(float))
else:
full_inputs = inputs.astype(float)
# Convert and apply.
targets = np.array(targets.numpy())
# If there is an aux channel containing the integration times, then add that.
if 'timesteps' in aux_data.keys():
integration_timesteps = np.diff(np.asarray(aux_data['timesteps'].numpy()))
else:
integration_timesteps = np.ones((len(inputs), seq_len))
return full_inputs, targets.astype(float), integration_timesteps
def train_epoch(state, rng, model, trainloader, seq_len, in_dim, batchnorm, lr_params):
"""
Training function for an epoch that loops over batches.
"""
# Store Metrics
model = model(training=True)
batch_losses = []
decay_function, ssm_lr, lr, step, end_step, opt_config, lr_min = lr_params
for batch_idx, batch in enumerate(tqdm(trainloader)):
inputs, labels, integration_times = prep_batch(batch, seq_len, in_dim)
rng, drop_rng = jax.random.split(rng)
state, loss = train_step(
state,
drop_rng,
inputs,
labels,
integration_times,
model,
batchnorm,
)
batch_losses.append(loss)
lr_params = (decay_function, ssm_lr, lr, step, end_step, opt_config, lr_min)
state, step = update_learning_rate_per_step(lr_params, state)
# Return average loss over batches
return state, np.mean(np.array(batch_losses)), step
def validate(state, model, testloader, seq_len, in_dim, batchnorm, step_rescale=1.0):
"""Validation function that loops over batches"""
model = model(training=False, step_rescale=step_rescale)
losses, accuracies, preds = np.array([]), np.array([]), np.array([])
for batch_idx, batch in enumerate(tqdm(testloader)):
inputs, labels, integration_timesteps = prep_batch(batch, seq_len, in_dim)
loss, acc, pred = eval_step(inputs, labels, integration_timesteps, state, model, batchnorm)
losses = np.append(losses, loss)
accuracies = np.append(accuracies, acc)
aveloss, aveaccu = np.mean(losses), np.mean(accuracies)
return aveloss, aveaccu
@partial(jax.jit, static_argnums=(5, 6))
def train_step(state,
rng,
batch_inputs,
batch_labels,
batch_integration_timesteps,
model,
batchnorm,
):
"""Performs a single training step given a batch of data"""
def loss_fn(params):
if batchnorm:
logits, mod_vars = model.apply(
{"params": params, "batch_stats": state.batch_stats},
batch_inputs, batch_integration_timesteps,
rngs={"dropout": rng},
mutable=["intermediates", "batch_stats"],
)
else:
logits, mod_vars = model.apply(
{"params": params},
batch_inputs, batch_integration_timesteps,
rngs={"dropout": rng},
mutable=["intermediates"],
)
loss = np.mean(cross_entropy_loss(logits, batch_labels))
return loss, (mod_vars, logits)
(loss, (mod_vars, logits)), grads = jax.value_and_grad(loss_fn, has_aux=True)(state.params)
if batchnorm:
state = state.apply_gradients(grads=grads, batch_stats=mod_vars["batch_stats"])
else:
state = state.apply_gradients(grads=grads)
return state, loss
@partial(jax.jit, static_argnums=(4, 5))
def eval_step(batch_inputs,
batch_labels,
batch_integration_timesteps,
state,
model,
batchnorm,
):
if batchnorm:
logits = model.apply({"params": state.params, "batch_stats": state.batch_stats},
batch_inputs, batch_integration_timesteps,
)
else:
logits = model.apply({"params": state.params},
batch_inputs, batch_integration_timesteps,
)
losses = cross_entropy_loss(logits, batch_labels)
accs = compute_accuracy(logits, batch_labels)
return losses, accs, logits