forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·228 lines (199 loc) · 9.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
import yaml
import paddle
import paddle.distributed as dist
from ppocr.data import build_dataloader, set_signal_handlers
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import set_seed
from ppocr.modeling.architectures import apply_to_static
import tools.program as program
dist.get_world_size()
def main(config, device, logger, vdl_writer):
# init dist environment
if config['Global']['distributed']:
dist.init_parallel_env()
global_config = config['Global']
# build dataloader
set_signal_handlers()
train_dataloader = build_dataloader(config, 'Train', device, logger)
if len(train_dataloader) == 0:
logger.error(
"No Images in train dataset, please ensure\n" +
"\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n"
+
"\t2. The annotation file and path in the configuration file are provided normally."
)
return
if config['Eval']:
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
else:
valid_dataloader = None
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
if config['Architecture']['Models'][key]['Head'][
'name'] == 'MultiHead': # for multi head
if config['PostProcess'][
'name'] == 'DistillationSARLabelDecode':
char_num = char_num - 2
if config['PostProcess'][
'name'] == 'DistillationNRTRLabelDecode':
char_num = char_num - 3
out_channels_list = {}
out_channels_list['CTCLabelDecode'] = char_num
# update SARLoss params
if list(config['Loss']['loss_config_list'][-1].keys())[
0] == 'DistillationSARLoss':
config['Loss']['loss_config_list'][-1][
'DistillationSARLoss'][
'ignore_index'] = char_num + 1
out_channels_list['SARLabelDecode'] = char_num + 2
elif list(config['Loss']['loss_config_list'][-1].keys())[
0] == 'DistillationNRTRLoss':
out_channels_list['NRTRLabelDecode'] = char_num + 3
config['Architecture']['Models'][key]['Head'][
'out_channels_list'] = out_channels_list
else:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
elif config['Architecture']['Head'][
'name'] == 'MultiHead': # for multi head
if config['PostProcess']['name'] == 'SARLabelDecode':
char_num = char_num - 2
if config['PostProcess']['name'] == 'NRTRLabelDecode':
char_num = char_num - 3
out_channels_list = {}
out_channels_list['CTCLabelDecode'] = char_num
# update SARLoss params
if list(config['Loss']['loss_config_list'][1].keys())[
0] == 'SARLoss':
if config['Loss']['loss_config_list'][1]['SARLoss'] is None:
config['Loss']['loss_config_list'][1]['SARLoss'] = {
'ignore_index': char_num + 1
}
else:
config['Loss']['loss_config_list'][1]['SARLoss'][
'ignore_index'] = char_num + 1
out_channels_list['SARLabelDecode'] = char_num + 2
elif list(config['Loss']['loss_config_list'][1].keys())[
0] == 'NRTRLoss':
out_channels_list['NRTRLabelDecode'] = char_num + 3
config['Architecture']['Head'][
'out_channels_list'] = out_channels_list
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
if config['PostProcess']['name'] == 'SARLabelDecode': # for SAR model
config['Loss']['ignore_index'] = char_num - 1
model = build_model(config['Architecture'])
use_sync_bn = config["Global"].get("use_sync_bn", False)
if use_sync_bn:
model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
logger.info('convert_sync_batchnorm')
model = apply_to_static(model, config, logger)
# build loss
loss_class = build_loss(config['Loss'])
# build optim
optimizer, lr_scheduler = build_optimizer(
config['Optimizer'],
epochs=config['Global']['epoch_num'],
step_each_epoch=len(train_dataloader),
model=model)
# build metric
eval_class = build_metric(config['Metric'])
logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
if valid_dataloader is not None:
logger.info('valid dataloader has {} iters'.format(
len(valid_dataloader)))
use_amp = config["Global"].get("use_amp", False)
amp_level = config["Global"].get("amp_level", 'O2')
amp_dtype = config["Global"].get("amp_dtype", 'float16')
amp_custom_black_list = config['Global'].get('amp_custom_black_list', [])
amp_custom_white_list = config['Global'].get('amp_custom_white_list', [])
if use_amp:
AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
if paddle.is_compiled_with_cuda():
AMP_RELATED_FLAGS_SETTING.update({
'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
'FLAGS_gemm_use_half_precision_compute_type': 0,
})
paddle.set_flags(AMP_RELATED_FLAGS_SETTING)
scale_loss = config["Global"].get("scale_loss", 1.0)
use_dynamic_loss_scaling = config["Global"].get(
"use_dynamic_loss_scaling", False)
scaler = paddle.amp.GradScaler(
init_loss_scaling=scale_loss,
use_dynamic_loss_scaling=use_dynamic_loss_scaling)
if amp_level == "O2":
model, optimizer = paddle.amp.decorate(
models=model,
optimizers=optimizer,
level=amp_level,
master_weight=True,
dtype=amp_dtype)
else:
scaler = None
# load pretrain model
pre_best_model_dict = load_model(config, model, optimizer,
config['Architecture']["model_type"])
if config['Global']['distributed']:
model = paddle.DataParallel(model)
# start train
program.train(config, train_dataloader, valid_dataloader, device, model,
loss_class, optimizer, lr_scheduler, post_process_class,
eval_class, pre_best_model_dict, logger, vdl_writer, scaler,
amp_level, amp_custom_black_list, amp_custom_white_list,
amp_dtype)
def test_reader(config, device, logger):
loader = build_dataloader(config, 'Train', device, logger)
import time
starttime = time.time()
count = 0
try:
for data in loader():
count += 1
if count % 1 == 0:
batch_time = time.time() - starttime
starttime = time.time()
logger.info("reader: {}, {}, {}".format(
count, len(data[0]), batch_time))
except Exception as e:
logger.info(e)
logger.info("finish reader: {}, Success!".format(count))
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess(is_train=True)
seed = config['Global']['seed'] if 'seed' in config['Global'] else 1024
set_seed(seed)
main(config, device, logger, vdl_writer)
# test_reader(config, device, logger)