Skip to content

Latest commit

 

History

History
 
 

2020-03-12 | Simplify and Scale Data Engineering Pipelines with Delta Lake

Simplify and Scale Data Engineering Pipelines with Delta Lake

2020-03-12 | Watch the video | This folder contains the presentation and sample notebooks

A common data engineering pipeline architecture uses tables that correspond to different quality levels, progressively adding structure to the data: data ingestion (“Bronze” tables), transformation/feature engineering (“Silver” tables), and machine learning training or prediction (“Gold” tables). Combined, we refer to these tables as a “multi-hop” architecture. It allows data engineers to build a pipeline that begins with raw data as a “single source of truth” from which everything flows. In this session, we will show how to build a scalable data engineering data pipeline using Delta Lake. Delta Lake is an open-source storage layer that brings reliability to data lakes. Delta Lake offers ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. It runs on top of your existing data lake and is fully compatible with Apache Spark APIs In this session you will learn about:

  • The data engineering pipeline architecture
  • Data engineering pipeline scenarios
  • Data engineering pipeline best practices
  • How Delta Lake enhances data engineering pipelines
  • The ease of adopting Delta Lake for building your data engineering pipelines