forked from leela-zero/leela-zero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpenCL.cpp
1127 lines (989 loc) · 40.7 KB
/
OpenCL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
This file is part of Leela Zero.
Copyright (C) 2017-2018 Gian-Carlo Pascutto and contributors
Leela Zero is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Leela Zero is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Leela Zero. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#ifdef USE_OPENCL
#include "OpenCL.h"
#include <cassert>
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <iterator>
#include <limits>
#include <stdexcept>
#include <cstdio>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include "Network.h"
#include "GTP.h"
#include "Utils.h"
#include "Tuner.h"
using namespace Utils;
static std::string cl_args =
#ifdef USE_HALF
"-DUSE_HALF "
#endif
"-cl-mad-enable -cl-fast-relaxed-math -cl-no-signed-zeros -cl-denorms-are-zero";
static std::string sourceCode_config = R"(
#ifdef USE_HALF
typedef half net_t;
#define vload_net_t(offset,p) vload_half(offset,p)
#define vstore_net_t(data,offset,p) vstore_half(data,offset,p)
#else
typedef float net_t;
#define vload_net_t(offset,p) ((p)[(offset)])
#define vstore_net_t(data,offset,p) (((p)[(offset)])=(data))
#endif
#define BOARD_SIZE )" + std::to_string(BOARD_SIZE) +
"\n #define BOARD_SQUARES " + std::to_string(BOARD_SQUARES);
static std::string sourceCode_convolve1 = R"(
__kernel
__attribute__((work_group_size_hint(8, 16, 1)))
void convolve1(
__global const net_t * restrict in,
__global net_t * restrict merge,
__global const net_t * restrict weights,
__local float * channel_buff,
__local float * row_buff) {
// cl::NDRange global(channels, outputs, row);
const int c = get_global_id(0); // channel
const int o = get_global_id(1); // output
const int row = get_global_id(2); // row
const int channels = get_global_size(0);
const int outputs = get_global_size(1);
// cl::NDRange local(2, (1->32), 1);
const int lx = get_local_id(0);
const int ly = get_local_id(1);
const int chan_buff_size = 8;
const int out_buff_size = get_local_size(1);
const int row_buff_size = 7;
const int chan_shift = 3;
// input = channels * height * width
// output = outputs * height * width
// weights = output * channels * filter
// merge = channels * outputs * height * width
const int width = BOARD_SIZE;
const int height = BOARD_SIZE;
const int strip_size = width;
// Copy the input channels (strips) locally
if (out_buff_size < BOARD_SIZE && ly == 0) {
// strip-row
for (int w = 0; w < width; w++) {
channel_buff[lx * width + w] =
vload_net_t((c * height + row) * width + w, in);
}
} else if (out_buff_size >= BOARD_SIZE && ly < BOARD_SIZE) {
// Every thread copies a column
channel_buff[lx * width + ly] = vload_net_t((c * height + row) * width + ly, in);
}
// Copy the filter we are applying locally
__private float filter_buff = vload_net_t((o * channels + c), weights);
barrier(CLK_LOCAL_MEM_FENCE);
int out_lane = 0;
int out_cw = 0;
#pragma unroll
for (int cw = 0; cw < width; cw++) {
int fid = lx * strip_size;
float out = channel_buff[fid + cw] * filter_buff;
row_buff[(ly * chan_buff_size + lx) * row_buff_size + out_lane] = out;
out_lane++;
// Row buffer full or last lane?
if (out_lane == row_buff_size || (cw == width - 1)) {
barrier(CLK_LOCAL_MEM_FENCE);
if (lx < out_lane) {
float val;
val = row_buff[(ly * chan_buff_size + 0) * row_buff_size + lx];
val += row_buff[(ly * chan_buff_size + 1) * row_buff_size + lx];
val += row_buff[(ly * chan_buff_size + 2) * row_buff_size + lx];
val += row_buff[(ly * chan_buff_size + 3) * row_buff_size + lx];
val += row_buff[(ly * chan_buff_size + 4) * row_buff_size + lx];
val += row_buff[(ly * chan_buff_size + 5) * row_buff_size + lx];
val += row_buff[(ly * chan_buff_size + 6) * row_buff_size + lx];
val += row_buff[(ly * chan_buff_size + 7) * row_buff_size + lx];
vstore_net_t(val, (((c >> chan_shift) * height + row) * width + out_cw + lx) * outputs + o, merge);
}
out_cw += row_buff_size;
out_lane = 0;
}
}
}
__kernel void merge(
__global const net_t * restrict in,
__global net_t * restrict out,
__private const int channels) {
// cl::NDRange global(outputs, BOARD_SQUARES);
const int gx = get_global_id(0);
const int gy = get_global_id(1);
const int output = gx;
const int b = gy;
const int outputs = get_global_size(0);
const int width = BOARD_SIZE;
const int height = BOARD_SIZE;
const int o = output;
float sum = 0;
for (int c = 0; c < channels; c++) {
sum += vload_net_t((c * BOARD_SQUARES + b) * outputs + o, in);
}
vstore_net_t(sum, o * BOARD_SQUARES + b, out);
}
)";
static std::string sourceCode_convolve3 = R"(
void __in_transform_eq(float x[4][4], __global net_t * restrict V, int offset, int CPpad) {
float T1[4][4];
T1[0][0] = x[0][0] - x[2][0];
T1[0][1] = x[0][1] - x[2][1];
T1[0][2] = x[0][2] - x[2][2];
T1[0][3] = x[0][3] - x[2][3];
T1[1][0] = x[1][0] + x[2][0];
T1[1][1] = x[1][1] + x[2][1];
T1[1][2] = x[1][2] + x[2][2];
T1[1][3] = x[1][3] + x[2][3];
T1[2][0] = x[2][0] - x[1][0];
T1[2][1] = x[2][1] - x[1][1];
T1[2][2] = x[2][2] - x[1][2];
T1[2][3] = x[2][3] - x[1][3];
T1[3][0] = x[1][0] - x[3][0];
T1[3][1] = x[1][1] - x[3][1];
T1[3][2] = x[1][2] - x[3][2];
T1[3][3] = x[1][3] - x[3][3];
vstore_net_t(T1[0][0] - T1[0][2], (0*4 + 0)*CPpad + offset, V);
vstore_net_t(T1[0][1] + T1[0][2], (0*4 + 1)*CPpad + offset, V);
vstore_net_t(T1[0][2] - T1[0][1], (0*4 + 2)*CPpad + offset, V);
vstore_net_t(T1[0][1] - T1[0][3], (0*4 + 3)*CPpad + offset, V);
vstore_net_t(T1[1][0] - T1[1][2], (1*4 + 0)*CPpad + offset, V);
vstore_net_t(T1[1][1] + T1[1][2], (1*4 + 1)*CPpad + offset, V);
vstore_net_t(T1[1][2] - T1[1][1], (1*4 + 2)*CPpad + offset, V);
vstore_net_t(T1[1][1] - T1[1][3], (1*4 + 3)*CPpad + offset, V);
vstore_net_t(T1[2][0] - T1[2][2], (2*4 + 0)*CPpad + offset, V);
vstore_net_t(T1[2][1] + T1[2][2], (2*4 + 1)*CPpad + offset, V);
vstore_net_t(T1[2][2] - T1[2][1], (2*4 + 2)*CPpad + offset, V);
vstore_net_t(T1[2][1] - T1[2][3], (2*4 + 3)*CPpad + offset, V);
vstore_net_t(T1[3][0] - T1[3][2], (3*4 + 0)*CPpad + offset, V);
vstore_net_t(T1[3][1] + T1[3][2], (3*4 + 1)*CPpad + offset, V);
vstore_net_t(T1[3][2] - T1[3][1], (3*4 + 2)*CPpad + offset, V);
vstore_net_t(T1[3][1] - T1[3][3], (3*4 + 3)*CPpad + offset, V);
}
__kernel void in_transform(__global net_t * restrict in, __global net_t * restrict V,
const int C, const int Cpad,
const int Ppad) {
const int W = BOARD_SIZE;
const int H = BOARD_SIZE;
const int T = W*H;
const int WTILES = (W + 1) / 2;
const int P = WTILES*WTILES;
const int CPpad = Ppad * Cpad;
const int block = get_global_id(0);
const int ch = get_global_id(1);
const int chT = ch*(T);
const int block_x = block % WTILES;
const int block_y = block / WTILES;
// Tiles overlap by 2
const int yin = 2 * block_y - 1;
const int xin = 2 * block_x - 1;
if (block < P && ch < C) {
// Cache input tile and handle zero padding
float x[4][4];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int a = xin + j;
int b = yin + i;
if (b >= 0 && a >= 0 && b < H && a < W) {
x[i][j] = vload_net_t(chT + b*W + a, in);
} else {
x[i][j] = 0.0f;
}
}
}
const int offset = ch*Ppad + block;
__in_transform_eq(x, V, offset, CPpad);
}
}
void __out_transform_eq(__global const net_t * restrict M, float o[4],
int Kpad, int Ppad, int block_x, int block_y)
{
const int W = BOARD_SIZE;
const int H = BOARD_SIZE;
const int WTILES = (W + 1) / 2;
const int b = block_y * WTILES + block_x;
const int KPpad = Kpad * Ppad;
const int k = get_global_id(0);
float temp_m[16];
for (int xn = 0, xnKPpad = b*Kpad + k; xn < 16; xn++, xnKPpad += KPpad) {
temp_m[xn] = vload_net_t(xnKPpad, M);
}
o[0] = temp_m[0*4 + 0] + temp_m[0*4 + 1] + temp_m[0*4 + 2] +
temp_m[1*4 + 0] + temp_m[1*4 + 1] + temp_m[1*4 + 2] +
temp_m[2*4 + 0] + temp_m[2*4 + 1] + temp_m[2*4 + 2];
o[1] = temp_m[0*4 + 1] - temp_m[0*4 + 2] - temp_m[0*4 + 3] +
temp_m[1*4 + 1] - temp_m[1*4 + 2] - temp_m[1*4 + 3] +
temp_m[2*4 + 1] - temp_m[2*4 + 2] - temp_m[2*4 + 3];
o[2] = temp_m[1*4 + 0] + temp_m[1*4 + 1] + temp_m[1*4 + 2] -
temp_m[2*4 + 0] - temp_m[2*4 + 1] - temp_m[2*4 + 2] -
temp_m[3*4 + 0] - temp_m[3*4 + 1] - temp_m[3*4 + 2];
o[3] = temp_m[1*4 + 1] - temp_m[1*4 + 2] - temp_m[1*4 + 3] -
temp_m[2*4 + 1] + temp_m[2*4 + 2] + temp_m[2*4 + 3] -
temp_m[3*4 + 1] + temp_m[3*4 + 2] + temp_m[3*4 + 3];
}
__kernel void out_transform_fused_bn(__global const net_t * restrict M,
__global net_t * restrict Y,
const int K,
const int Kpad, const int Ppad,
__global const net_t * restrict residual,
__constant const net_t * restrict means,
__constant const net_t * restrict stddivs) {
const int W = BOARD_SIZE;
const int H = BOARD_SIZE;
const int WTILES = (W + 1) / 2;
const int P = WTILES * WTILES;
int k = get_global_id(0);
int block = get_global_id(1);
const int block_x = block % WTILES;
const int block_y = block / WTILES;
int x = 2*block_x;
int y = 2*block_y;
int a_ind = (y)*W + (x);
if (k < K && block < P) {
const int kHW = k * W * H;
float o[4];
__out_transform_eq(M, o, Kpad, Ppad, block_x, block_y);
const float mean = vload_net_t(k, means);
const float scale_stddiv = vload_net_t(k, stddivs);
const bool pred[4] = { 1, x+1 < W, y+1 < H, x+1 < W & y+1 < H};
const int a[4] = {a_ind, a_ind+1, a_ind+W, a_ind+W+1};
for (int i = 0; i < 4; i++) {
if (pred[i]) {
o[i] = scale_stddiv * (o[i] - mean);
if (residual) {
o[i] += vload_net_t(kHW + a[i], residual);
}
o[i] = o[i] > 0 ? o[i] : 0.0f;
vstore_net_t(o[i], kHW + a[i], Y);
}
}
}
}
__kernel void out_transform_fused_bn_in(
__global const net_t * restrict M,
__global net_t * restrict Y,
__global net_t * restrict V,
const int K,
const int Kpad, const int Ppad, const int Cpad,
__global const net_t * restrict residual,
__constant const net_t * restrict means,
__constant const net_t * restrict stddivs,
__local float * ybuf) {
const int W = BOARD_SIZE;
const int H = BOARD_SIZE;
const int T = W*H;
const int WTILES = (W + 1) / 2;
const int P = WTILES * WTILES;
const int KPpad = Kpad * Ppad;
const int k = get_global_id(0);
const int kg = get_local_id(0);
const int block = get_global_id(1);
const int block_x = block % WTILES;
const int block_y = block / WTILES;
const int yin = 2 * block_y - 1;
const int xin = 2 * block_x - 1;
const int x = 2*block_x;
const int y = 2*block_y;
int a_ind = (y)*W + (x);
if (k < K && block < P) {
const int a[4] = {a_ind, a_ind+1, a_ind+W, a_ind+W+1};
const bool pred[4] = { 1, x+1 < W, y+1 < H, x+1 < W & y+1 < H};
const int kHW = k * W * H;
float o[4];
__out_transform_eq(M, o, Kpad, Ppad, block_x, block_y);
const float mean = vload_net_t(k, means);
const float scale_stddiv = vload_net_t(k, stddivs);
for (int i = 0; i < 4; i++) {
if (pred[i]) {
o[i] = scale_stddiv * (o[i] - mean);
if (residual) {
o[i] += vload_net_t(kHW + a[i], residual);
}
o[i] = o[i] > 0 ? o[i] : 0.0f;
ybuf[kg * T + a[i]] = o[i];
if (Y) {
vstore_net_t(o[i], kHW + a[i], Y);
}
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (block < P && k < K) {
const int CPpad = Ppad * Cpad;
// Cache input tile and handle zero padding
float xx[4][4];
for (int i = 0; i < 4; i++) {
int b = yin + i;
for (int j = 0; j < 4; j++) {
int a = xin + j;
if (b >= 0 && a >= 0 && b < H && a < W) {
xx[i][j] = ybuf[kg * T + b*W + a];
} else {
xx[i][j] = 0.0f;
}
}
}
const int offset = k*Ppad + block;
__in_transform_eq(xx, V, offset, CPpad);
}
}
)";
#ifdef USE_HALF
const std::string sourceCode_sgemm =
#include "clblast_level3_half/common.opencl"
#include "clblast_level3_half/xgemm_part1.opencl"
#include "clblast_level3_half/xgemm_part2.opencl"
#include "clblast_level3_half/xgemm_part3.opencl"
#include "clblast_level3_half/xgemm_batched.opencl"
;
#else
const std::string sourceCode_sgemm =
#include "clblast_level3/common.opencl"
#include "clblast_level3/xgemm_part1.opencl"
#include "clblast_level3/xgemm_part2.opencl"
#include "clblast_level3/xgemm_part3.opencl"
#include "clblast_level3/xgemm_batched.opencl"
;
#endif
thread_local ThreadData opencl_thread_data;
void OpenCL::ensure_thread_initialized() {
if (!opencl_thread_data.m_is_initialized) {
// Make kernels
opencl_thread_data.m_convolve1_kernel =
cl::Kernel(m_program, "convolve1");
opencl_thread_data.m_merge_kernel =
cl::Kernel(m_program, "merge");
opencl_thread_data.m_in_transform_kernel =
cl::Kernel(m_program, "in_transform");
opencl_thread_data.m_sgemm_kernel =
cl::Kernel(m_program, "XgemmBatched");
opencl_thread_data.m_out_transform_bn_kernel =
cl::Kernel(m_program, "out_transform_fused_bn");
opencl_thread_data.m_out_transform_bn_in_kernel =
cl::Kernel(m_program, "out_transform_fused_bn_in");
opencl_thread_data.m_commandqueue =
cl::CommandQueue(m_context, m_device);
opencl_thread_data.m_is_initialized = true;
}
}
void OpenCL_Network::add_weights(size_t layer,
size_t size,
const float * weights) {
if (layer >= m_layers.size()) {
m_layers.push_back(Layer());
}
auto converted_weights = std::vector<net_t>();
for (auto i = size_t{0}; i < size; i++) {
converted_weights.emplace_back(weights[i]);
}
auto weightSize = size * sizeof(decltype(converted_weights)::value_type);
m_layers.back().weights.emplace_back(
m_opencl.m_context,
CL_MEM_COPY_HOST_PTR | CL_MEM_READ_ONLY,
weightSize,
const_cast<net_t*>(converted_weights.data()));
}
void OpenCL_Network::forward(const std::vector<net_t>& input,
std::vector<net_t>& output_pol,
std::vector<net_t>& output_val) {
constexpr auto width = BOARD_SIZE;
constexpr auto height = BOARD_SIZE;
constexpr auto tiles = WINOGRAD_P;
constexpr auto one_plane = width * height * sizeof(net_t);
const auto finalSize_pol = m_layers[m_layers.size()-2].outputs * one_plane;
const auto finalSize_val = m_layers.back().outputs * one_plane;
m_opencl.ensure_thread_initialized();
if (!opencl_thread_data.m_buffers_allocated) {
auto max_channels = unsigned{0};
for (const auto& layer : m_layers) {
max_channels = std::max(max_channels,
std::max(layer.channels, layer.outputs));
}
const auto mwg = m_opencl.m_sgemm_tuners.mwg;
const auto nwg = m_opencl.m_sgemm_tuners.nwg;
const auto vwm = m_opencl.m_sgemm_tuners.vwm;
const auto vwn = m_opencl.m_sgemm_tuners.vwn;
const auto m_ceil = ceilMultiple(ceilMultiple(max_channels, mwg), vwm);
const auto n_ceil = ceilMultiple(ceilMultiple(tiles, nwg), vwn);
const auto alloc_inSize =
m_ceil * m_ceil * max_channels * sizeof(net_t);
const auto alloc_vm_size =
WINOGRAD_TILE * m_ceil * n_ceil * sizeof(net_t);
auto v_zeros = std::vector<net_t>(alloc_vm_size);
opencl_thread_data.m_inBuffer = cl::Buffer(
m_opencl.m_context,
CL_MEM_READ_WRITE, alloc_inSize);
opencl_thread_data.m_inBuffer2 = cl::Buffer(
m_opencl.m_context,
CL_MEM_READ_WRITE, alloc_inSize);
opencl_thread_data.m_VBuffer = cl::Buffer(
m_opencl.m_context,
CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS | CL_MEM_COPY_HOST_PTR,
alloc_vm_size, v_zeros.data(), nullptr);
opencl_thread_data.m_MBuffer = cl::Buffer(
m_opencl.m_context,
CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, alloc_vm_size);
opencl_thread_data.m_pinnedOutBuffer_pol = cl::Buffer(
m_opencl.m_context,
CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, finalSize_pol);
opencl_thread_data.m_pinnedOutBuffer_val = cl::Buffer(
m_opencl.m_context,
CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, finalSize_val);
opencl_thread_data.m_buffers_allocated = true;
}
cl::Buffer & inBuffer = opencl_thread_data.m_inBuffer;
cl::Buffer & inBuffer2 = opencl_thread_data.m_inBuffer2;
cl::Buffer & VBuffer = opencl_thread_data.m_VBuffer;
cl::Buffer & MBuffer = opencl_thread_data.m_MBuffer;
cl::CommandQueue & queue = opencl_thread_data.m_commandqueue;
const auto inSize = sizeof(net_t) * input.size();
queue.enqueueWriteBuffer(inBuffer, CL_FALSE, 0, inSize, input.data());
auto skip_in_trans = false;
for (auto iter = cbegin(m_layers); iter != cend(m_layers); iter++) {
const auto& layer = *iter;
const auto niter = std::next(iter);
if (layer.is_input_convolution) {
assert(niter != cend(m_layers));
auto conv_weights = begin(layer.weights);
auto bn_weights = begin(layer.weights) + 1;
auto skip_next_in_trans = false;
if (niter->is_residual_block) {
skip_next_in_trans = true;
}
convolve3(layer.channels,
layer.outputs,
inBuffer,
inBuffer,
VBuffer,
MBuffer,
conv_weights,
nullptr,
bn_weights,
skip_in_trans, skip_next_in_trans, true);
skip_in_trans = skip_next_in_trans;
} else if (layer.is_residual_block) {
assert(layer.channels == layer.outputs);
assert(niter != cend(m_layers));
auto conv1_weights = begin(layer.weights);
auto bn1_weights = begin(layer.weights) + 1;
auto conv2_weights = begin(layer.weights) + 3;
auto bn2_weights = begin(layer.weights) + 4;
convolve3(layer.channels,
layer.outputs,
inBuffer,
inBuffer2,
VBuffer,
MBuffer,
conv1_weights,
nullptr,
bn1_weights,
skip_in_trans, true, false);
auto skip_next_in_trans = false;
if (niter->is_residual_block) {
skip_next_in_trans = true;
}
convolve3(layer.channels,
layer.outputs,
inBuffer2,
inBuffer,
VBuffer,
MBuffer,
conv2_weights,
&inBuffer,
bn2_weights,
true, skip_next_in_trans, true);
skip_in_trans = skip_next_in_trans;
} else {
assert(layer.is_convolve1);
cl::Buffer out_buffer;
if (niter == cend(m_layers)) {
out_buffer = opencl_thread_data.m_pinnedOutBuffer_val;
} else {
out_buffer = opencl_thread_data.m_pinnedOutBuffer_pol;
}
convolve1(layer.channels,
layer.outputs,
inBuffer,
out_buffer,
VBuffer,
begin(layer.weights));
}
}
auto pinnedOutBufferHost_pol = queue.enqueueMapBuffer(
opencl_thread_data.m_pinnedOutBuffer_pol, CL_FALSE,
CL_MAP_READ, 0, finalSize_pol);
auto pinnedOutBufferHost_val = queue.enqueueMapBuffer(
opencl_thread_data.m_pinnedOutBuffer_val, CL_FALSE,
CL_MAP_READ, 0, finalSize_val);
{
// Finish call is usually a busy wait. When using multiple threads
// use the lock to avoid busy waiting with all threads.
std::lock_guard<std::mutex> lock(m_queue_finish_mutex);
queue.finish();
}
std::memcpy(output_pol.data(), pinnedOutBufferHost_pol, finalSize_pol);
std::memcpy(output_val.data(), pinnedOutBufferHost_val, finalSize_val);
queue.enqueueUnmapMemObject(opencl_thread_data.m_pinnedOutBuffer_pol,
pinnedOutBufferHost_pol);
queue.enqueueUnmapMemObject(opencl_thread_data.m_pinnedOutBuffer_val,
pinnedOutBufferHost_val);
}
void OpenCL_Network::convolve3(int channels, int outputs,
cl::Buffer& bufferIn,
cl::Buffer& bufferOut,
cl::Buffer& bufferV,
cl::Buffer& bufferM,
weight_slice_t weights,
cl::Buffer* bufferResidual,
weight_slice_t bn_weights,
bool skip_in_transform,
bool fuse_in_transform,
bool store_inout) {
cl::Kernel & in_transform_kernel = opencl_thread_data.m_in_transform_kernel;
cl::Kernel & sgemm_kernel = opencl_thread_data.m_sgemm_kernel;
cl::Kernel & out_transform_bn_kernel =
opencl_thread_data.m_out_transform_bn_kernel;
cl::Kernel & out_transform_bn_in_kernel =
opencl_thread_data.m_out_transform_bn_in_kernel;
auto mwg = m_opencl.m_sgemm_tuners.mwg;
auto nwg = m_opencl.m_sgemm_tuners.nwg;
auto kwg = m_opencl.m_sgemm_tuners.kwg;
auto vwm = m_opencl.m_sgemm_tuners.vwm;
auto vwn = m_opencl.m_sgemm_tuners.vwn;
auto mdimc = m_opencl.m_sgemm_tuners.mdimc;
auto ndimc = m_opencl.m_sgemm_tuners.ndimc;
auto wavefront_size = m_opencl.m_wavefront_size;
assert(mwg != 0);
assert(nwg != 0);
assert(kwg != 0);
assert(mdimc != 0);
assert(ndimc != 0);
assert(vwm != 0);
assert(vwn != 0);
assert(wavefront_size != 0);
constexpr auto tiles = WINOGRAD_P;
constexpr auto width = BOARD_SIZE;
constexpr auto height = BOARD_SIZE;
auto wgs = ceilMultiple(tiles, wavefront_size);
auto m_ceil = int(ceilMultiple(ceilMultiple(outputs, mwg), vwm));
auto n_ceil = int(ceilMultiple(ceilMultiple(tiles, nwg), vwn));
auto k_ceil = int(ceilMultiple(ceilMultiple(channels, kwg), vwm));
cl::CommandQueue & queue = opencl_thread_data.m_commandqueue;
if (!skip_in_transform) {
try {
in_transform_kernel.setArg(0, bufferIn);
in_transform_kernel.setArg(1, bufferV);
in_transform_kernel.setArg(2, channels);
in_transform_kernel.setArg(3, k_ceil);
in_transform_kernel.setArg(4, n_ceil);
queue.enqueueNDRangeKernel(in_transform_kernel, cl::NullRange,
cl::NDRange(wgs, channels));
} catch (const cl::Error &e) {
std::cerr << "Error in convolve3: " << e.what() << ": "
<< e.err() << std::endl;
throw;
}
}
try {
sgemm_kernel.setArg(0, m_ceil);
sgemm_kernel.setArg(1, n_ceil);
sgemm_kernel.setArg(2, k_ceil);
sgemm_kernel.setArg(3, weights[0]);
sgemm_kernel.setArg(4, bufferV);
sgemm_kernel.setArg(5, bufferM);
cl::NDRange local_sgemm = {mdimc, ndimc, 1};
cl::NDRange size_sgemm = {(m_ceil * mdimc) / mwg,
(n_ceil * ndimc) / nwg,
cl::size_type(WINOGRAD_TILE)};
queue.enqueueNDRangeKernel(sgemm_kernel, cl::NullRange,
size_sgemm, local_sgemm);
} catch (const cl::Error &e) {
std::cerr << "Error in convolve3: " << e.what() << ": "
<< e.err() << std::endl;
throw;
}
try {
if (fuse_in_transform) {
// TODO : Eventually this might also be something tuneable?
constexpr auto dim_size = 2;
out_transform_bn_in_kernel.setArg(0, bufferM);
if (store_inout) {
out_transform_bn_in_kernel.setArg(1, bufferOut);
} else {
out_transform_bn_in_kernel.setArg(1, nullptr);
}
out_transform_bn_in_kernel.setArg(2, bufferV);
out_transform_bn_in_kernel.setArg(3, outputs);
out_transform_bn_in_kernel.setArg(4, m_ceil);
out_transform_bn_in_kernel.setArg(5, n_ceil);
// k_ceil of the next convolution
auto k_ceil2 = int(ceilMultiple(ceilMultiple(outputs, kwg), vwm));
out_transform_bn_in_kernel.setArg(6, k_ceil2);
if (bufferResidual) {
out_transform_bn_in_kernel.setArg(7, *bufferResidual);
} else {
out_transform_bn_in_kernel.setArg(7, nullptr);
}
out_transform_bn_in_kernel.setArg(8, bn_weights[0]);
out_transform_bn_in_kernel.setArg(9, bn_weights[1]);
out_transform_bn_in_kernel.setArg(10,
cl::Local(dim_size * width * height * sizeof(float)));
queue.enqueueNDRangeKernel(out_transform_bn_in_kernel,
cl::NullRange,
cl::NDRange(outputs, wgs),
cl::NDRange(dim_size, wgs));
} else {
out_transform_bn_kernel.setArg(0, bufferM);
out_transform_bn_kernel.setArg(1, bufferOut);
out_transform_bn_kernel.setArg(2, outputs);
out_transform_bn_kernel.setArg(3, m_ceil);
out_transform_bn_kernel.setArg(4, n_ceil);
if (bufferResidual) {
out_transform_bn_kernel.setArg(5, *bufferResidual);
} else {
out_transform_bn_kernel.setArg(5, nullptr);
}
out_transform_bn_kernel.setArg(6, bn_weights[0]);
out_transform_bn_kernel.setArg(7, bn_weights[1]);
queue.enqueueNDRangeKernel(out_transform_bn_kernel, cl::NullRange,
cl::NDRange(outputs, wgs));
}
} catch (const cl::Error &e) {
std::cerr << "Error in convolve3: " << e.what() << ": "
<< e.err() << std::endl;
throw;
}
}
void OpenCL_Network::convolve1(int channels, int outputs,
cl::Buffer& bufferInput,
cl::Buffer& bufferOutput,
cl::Buffer& bufferMerge,
weight_slice_t weights) {
// The size of the board is defined at compile time
constexpr int width = BOARD_SIZE;
constexpr int boardsize = BOARD_SQUARES;
constexpr int rowTiles = BOARD_SIZE;
// Input channel grouping in multiples of 8
constexpr int channelGroup = 8;
constexpr int channelShift = 3;
constexpr int rowGroup = 1;
size_t outputGroup = std::min(outputs, 32);
auto m_convolve_kernel = &opencl_thread_data.m_convolve1_kernel;
#ifndef NDEBUG
// Total output size after reducing
size_t outSize = boardsize * outputs * sizeof(net_t);
// Produce channel * output planes and merge them at the end
size_t mergeSize = (channels >> channelShift) * outSize;
assert(mergeSize <= bufferMerge.getInfo<CL_MEM_SIZE>());
#endif
// Copy the rows locally
size_t stripSize = width * sizeof(float);
int rowBuffer = std::min<int>(channelGroup, 7);
size_t rowSize = channelGroup * outputGroup * rowBuffer * sizeof(float);
cl::CommandQueue & queue = opencl_thread_data.m_commandqueue;
try {
m_convolve_kernel->setArg(0, bufferInput);
m_convolve_kernel->setArg(1, bufferMerge);
m_convolve_kernel->setArg(2, weights[0]);
m_convolve_kernel->setArg(3, cl::Local(stripSize * channelGroup * rowGroup));
m_convolve_kernel->setArg(4, cl::Local(rowSize));
queue.enqueueNDRangeKernel(*m_convolve_kernel, cl::NullRange,
cl::NDRange(channels, outputs, rowTiles),
cl::NDRange(channelGroup, outputGroup, rowGroup));
} catch (const cl::Error &e) {
std::cerr << "Error in convolve1: " << e.what() << ": "
<< e.err() << std::endl;
throw;
}
cl::Kernel & merge_kernel = opencl_thread_data.m_merge_kernel;
assert(channels % (1 << channelShift) == 0);
try {
merge_kernel.setArg(0, bufferMerge);
merge_kernel.setArg(1, bufferOutput);
merge_kernel.setArg(2, channels >> channelShift);
queue.enqueueNDRangeKernel(merge_kernel, cl::NullRange,
cl::NDRange(outputs, boardsize),
cl::NDRange(std::min(8, outputs), BOARD_SIZE));
} catch (const cl::Error &e) {
std::cerr << "Error in merge: " << e.what() << ": "
<< e.err() << std::endl;
throw;
}
}
template<class T>
static std::string opencl_dev_type_to_string(T type) {
if (type == CL_DEVICE_TYPE_CPU) {
return "CPU";
} else if (type == CL_DEVICE_TYPE_GPU) {
return "GPU";
} else if (type == CL_DEVICE_TYPE_ACCELERATOR) {
return "Accelerator";
} else {
return "Unknown";
}
}
static std::string trim(std::string trim_me) {
boost::algorithm::trim(trim_me);
return trim_me;
}
void OpenCL::process_tuners(std::string tuners) {
std::string buf;
std::stringstream ss(tuners);
std::size_t found;
auto mwg = false;
auto nwg = false;
auto kwg = false;
auto ndimc = false;
auto mdimc = false;
auto vwm = false;
auto vwn = false;
while (ss >> buf) {
found = buf.find("=");
if (found == std::string::npos) {
std::cerr << "Invalid tuner string: " << tuners << std::endl;
std::exit(-1);
}
std::string name = buf.substr(0, found);
auto value = std::stoi(buf.substr(found + 1, std::string::npos));
if (name == "-DMWG") {
m_sgemm_tuners.mwg = value;
mwg = true;
}
if (name == "-DNWG") {
m_sgemm_tuners.nwg = value;
nwg = true;
}
if (name == "-DKWG") {
m_sgemm_tuners.kwg = value;
kwg = true;
}
if (name == "-DMDIMC") {
m_sgemm_tuners.mdimc = value;
mdimc = true;
}
if (name == "-DNDIMC") {
m_sgemm_tuners.ndimc = value;
ndimc = true;
}
if (name == "-DVWM") {
m_sgemm_tuners.vwm = value;
vwm = true;
}
if (name == "-DVWN") {
m_sgemm_tuners.vwn = value;
vwn = true;
}
}
if (!mwg || !nwg || !kwg || !mdimc || !ndimc || !vwm || !vwn) {
std::cerr << "Missing tuner parameters";
if (!mwg) {
std::cerr << " MWG";
}
if (!nwg) {
std::cerr << " NWG";
}
if (!kwg) {
std::cerr << " KWG";
}
if (!mdimc) {
std::cerr << " MDIMC";
}
if (!ndimc) {
std::cerr << " NDIMC";
}
if (!vwm) {
std::cerr << " VWM";
}
if (!vwn) {
std::cerr << " VWN";
}
std::cerr << std::endl;
std::exit(-1);
}
}
std::vector<size_t> OpenCL::get_sgemm_tuners(void) {
std::vector<size_t> tuners;
tuners.emplace_back(m_sgemm_tuners.mwg);
tuners.emplace_back(m_sgemm_tuners.nwg);
tuners.emplace_back(m_sgemm_tuners.kwg);
tuners.emplace_back(m_sgemm_tuners.vwm);
tuners.emplace_back(m_sgemm_tuners.vwn);
tuners.emplace_back(m_sgemm_tuners.mdimc);
tuners.emplace_back(m_sgemm_tuners.ndimc);
return tuners;
}
void OpenCL::initialize(const int channels, const std::vector<int> & gpus,
bool silent) {
std::vector<cl::Platform> platforms;
try {
cl::Platform::get(&platforms);
} catch (const cl::Error &e) {
myprintf("OpenCL: %s\n", e.what());
throw;
}
auto best_version = 0.0f;
cl::Platform best_platform;
cl::Device best_device;
std::string best_vendor;
auto best_score = 0;
auto found_device = false;
auto id = 0;
if (!silent) {
myprintf("Detected %d OpenCL platforms.\n", platforms.size());
}
for (const auto &p : platforms) {
std::string platvers = p.getInfo<CL_PLATFORM_VERSION>();
if (!silent) {
std::string platprof = p.getInfo<CL_PLATFORM_PROFILE>();
std::string platname = p.getInfo<CL_PLATFORM_NAME>();
std::string platvend = p.getInfo<CL_PLATFORM_VENDOR>();
myprintf("Platform version: %s\n", platvers.c_str());;
myprintf("Platform profile: %s\n", platprof.c_str());
myprintf("Platform name: %s\n", platname.c_str());
myprintf("Platform vendor: %s\n", platvend.c_str());
}
std::istringstream versstream(platvers);
std::string tmp;
float opencl_version;
versstream >> tmp >> opencl_version;
std::vector<cl::Device> devices;
try {
p.getDevices(CL_DEVICE_TYPE_ALL, &devices);
} catch (const cl::Error &e) {
myprintf("Error getting device(s): %s: %d\n", e.what(), e.err());
devices.clear();
}
for (auto& d : devices) {
if (!silent) {
myprintf("Device ID: %d\n", id);
myprintf("Device name: %s\n",
trim(d.getInfo<CL_DEVICE_NAME>()).c_str());
myprintf("Device type: %s\n",
opencl_dev_type_to_string(d.getInfo<CL_DEVICE_TYPE>()).c_str());
myprintf("Device vendor: %s\n",
d.getInfo<CL_DEVICE_VENDOR>().c_str());
myprintf("Device driver: %s\n",