forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.html
868 lines (728 loc) · 62.8 KB
/
data.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torch.utils.data — PyTorch master documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Lato" type="text/css" />
<link rel="stylesheet" href="_static/css/pytorch_theme.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="torch.utils.model_zoo" href="model_zoo.html" />
<link rel="prev" title="torch.utils.ffi" href="ffi.html" />
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search">
<a href="index.html">
<img src="_static/pytorch-logo-dark.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.3.1 <br/> <a href="https://pytorch.org/docs/versions.html"> version selector ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/autograd.html">Autograd mechanics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#excluding-subgraphs-from-backward">Excluding subgraphs from backward</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/autograd.html#requires-grad"><code class="docutils literal"><span class="pre">requires_grad</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/autograd.html#volatile"><code class="docutils literal"><span class="pre">volatile</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#how-autograd-encodes-the-history">How autograd encodes the history</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#in-place-operations-on-variables">In-place operations on Variables</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#in-place-correctness-checks">In-place correctness checks</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/broadcasting.html">Broadcasting semantics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/broadcasting.html#general-semantics">General semantics</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/broadcasting.html#in-place-semantics">In-place semantics</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/broadcasting.html#backwards-compatibility">Backwards compatibility</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/cuda.html">CUDA semantics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/cuda.html#asynchronous-execution">Asynchronous execution</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#cuda-streams">CUDA streams</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="notes/cuda.html#memory-management">Memory management</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/cuda.html#best-practices">Best practices</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#device-agnostic-code">Device-agnostic code</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#use-pinned-memory-buffers">Use pinned memory buffers</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#use-nn-dataparallel-instead-of-multiprocessing">Use nn.DataParallel instead of multiprocessing</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.html">Extending PyTorch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/extending.html#extending-torch-autograd">Extending <code class="docutils literal"><span class="pre">torch.autograd</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/extending.html#extending-torch-nn">Extending <code class="docutils literal"><span class="pre">torch.nn</span></code></a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/extending.html#adding-a-module">Adding a <code class="docutils literal"><span class="pre">Module</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="notes/extending.html#writing-custom-c-extensions">Writing custom C extensions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/multiprocessing.html">Multiprocessing best practices</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/multiprocessing.html#sharing-cuda-tensors">Sharing CUDA tensors</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/multiprocessing.html#best-practices-and-tips">Best practices and tips</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/multiprocessing.html#avoiding-and-fighting-deadlocks">Avoiding and fighting deadlocks</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/multiprocessing.html#reuse-buffers-passed-through-a-queue">Reuse buffers passed through a Queue</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/multiprocessing.html#asynchronous-multiprocess-training-e-g-hogwild">Asynchronous multiprocess training (e.g. Hogwild)</a><ul>
<li class="toctree-l4"><a class="reference internal" href="notes/multiprocessing.html#hogwild">Hogwild</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/serialization.html">Serialization semantics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/serialization.html#best-practices">Best practices</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/serialization.html#recommended-approach-for-saving-a-model">Recommended approach for saving a model</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="torch.html">torch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="torch.html#tensors">Tensors</a><ul>
<li class="toctree-l3"><a class="reference internal" href="torch.html#creation-ops">Creation Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#indexing-slicing-joining-mutating-ops">Indexing, Slicing, Joining, Mutating Ops</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#random-sampling">Random sampling</a><ul>
<li class="toctree-l3"><a class="reference internal" href="torch.html#in-place-random-sampling">In-place random sampling</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#serialization">Serialization</a></li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#parallelism">Parallelism</a></li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#math-operations">Math operations</a><ul>
<li class="toctree-l3"><a class="reference internal" href="torch.html#pointwise-ops">Pointwise Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#reduction-ops">Reduction Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#comparison-ops">Comparison Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#other-operations">Other Operations</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#blas-and-lapack-operations">BLAS and LAPACK Operations</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html">torch.nn</a><ul>
<li class="toctree-l2"><a class="reference internal" href="nn.html#parameters">Parameters</a></li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#containers">Containers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#module"><span class="hidden-section">Module</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#sequential"><span class="hidden-section">Sequential</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#modulelist"><span class="hidden-section">ModuleList</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#parameterlist"><span class="hidden-section">ParameterList</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#convolution-layers">Convolution Layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv1d"><span class="hidden-section">Conv1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv2d"><span class="hidden-section">Conv2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv3d"><span class="hidden-section">Conv3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#convtranspose1d"><span class="hidden-section">ConvTranspose1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#convtranspose2d"><span class="hidden-section">ConvTranspose2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#convtranspose3d"><span class="hidden-section">ConvTranspose3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#pooling-layers">Pooling Layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxpool1d"><span class="hidden-section">MaxPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxpool2d"><span class="hidden-section">MaxPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxpool3d"><span class="hidden-section">MaxPool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxunpool1d"><span class="hidden-section">MaxUnpool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxunpool2d"><span class="hidden-section">MaxUnpool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxunpool3d"><span class="hidden-section">MaxUnpool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avgpool1d"><span class="hidden-section">AvgPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avgpool2d"><span class="hidden-section">AvgPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avgpool3d"><span class="hidden-section">AvgPool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#fractionalmaxpool2d"><span class="hidden-section">FractionalMaxPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lppool2d"><span class="hidden-section">LPPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptivemaxpool1d"><span class="hidden-section">AdaptiveMaxPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptivemaxpool2d"><span class="hidden-section">AdaptiveMaxPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptivemaxpool3d"><span class="hidden-section">AdaptiveMaxPool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptiveavgpool1d"><span class="hidden-section">AdaptiveAvgPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptiveavgpool2d"><span class="hidden-section">AdaptiveAvgPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptiveavgpool3d"><span class="hidden-section">AdaptiveAvgPool3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#padding-layers">Padding Layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#reflectionpad2d"><span class="hidden-section">ReflectionPad2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#replicationpad2d"><span class="hidden-section">ReplicationPad2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#replicationpad3d"><span class="hidden-section">ReplicationPad3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#zeropad2d"><span class="hidden-section">ZeroPad2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#constantpad2d"><span class="hidden-section">ConstantPad2d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#non-linear-activations">Non-linear Activations</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#relu"><span class="hidden-section">ReLU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#relu6"><span class="hidden-section">ReLU6</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#elu"><span class="hidden-section">ELU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#selu"><span class="hidden-section">SELU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#prelu"><span class="hidden-section">PReLU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#leakyrelu"><span class="hidden-section">LeakyReLU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#threshold"><span class="hidden-section">Threshold</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hardtanh"><span class="hidden-section">Hardtanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#sigmoid"><span class="hidden-section">Sigmoid</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#tanh"><span class="hidden-section">Tanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#logsigmoid"><span class="hidden-section">LogSigmoid</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softplus"><span class="hidden-section">Softplus</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softshrink"><span class="hidden-section">Softshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softsign"><span class="hidden-section">Softsign</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#tanhshrink"><span class="hidden-section">Tanhshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmin"><span class="hidden-section">Softmin</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmax"><span class="hidden-section">Softmax</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmax2d"><span class="hidden-section">Softmax2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#logsoftmax"><span class="hidden-section">LogSoftmax</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#normalization-layers">Normalization layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batchnorm1d"><span class="hidden-section">BatchNorm1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batchnorm2d"><span class="hidden-section">BatchNorm2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batchnorm3d"><span class="hidden-section">BatchNorm3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#instancenorm1d"><span class="hidden-section">InstanceNorm1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#instancenorm2d"><span class="hidden-section">InstanceNorm2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#instancenorm3d"><span class="hidden-section">InstanceNorm3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#recurrent-layers">Recurrent layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#rnn"><span class="hidden-section">RNN</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lstm"><span class="hidden-section">LSTM</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#gru"><span class="hidden-section">GRU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#rnncell"><span class="hidden-section">RNNCell</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lstmcell"><span class="hidden-section">LSTMCell</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#grucell"><span class="hidden-section">GRUCell</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#linear-layers">Linear layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#linear"><span class="hidden-section">Linear</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#bilinear"><span class="hidden-section">Bilinear</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#dropout-layers">Dropout layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dropout"><span class="hidden-section">Dropout</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dropout2d"><span class="hidden-section">Dropout2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dropout3d"><span class="hidden-section">Dropout3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#alphadropout"><span class="hidden-section">AlphaDropout</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#sparse-layers">Sparse layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#embedding"><span class="hidden-section">Embedding</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#embeddingbag"><span class="hidden-section">EmbeddingBag</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#distance-functions">Distance functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosinesimilarity"><span class="hidden-section">CosineSimilarity</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pairwisedistance"><span class="hidden-section">PairwiseDistance</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#loss-functions">Loss functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#l1loss"><span class="hidden-section">L1Loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#mseloss"><span class="hidden-section">MSELoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#crossentropyloss"><span class="hidden-section">CrossEntropyLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#nllloss"><span class="hidden-section">NLLLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#poissonnllloss"><span class="hidden-section">PoissonNLLLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#nllloss2d"><span class="hidden-section">NLLLoss2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#kldivloss"><span class="hidden-section">KLDivLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#bceloss"><span class="hidden-section">BCELoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#bcewithlogitsloss"><span class="hidden-section">BCEWithLogitsLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#marginrankingloss"><span class="hidden-section">MarginRankingLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hingeembeddingloss"><span class="hidden-section">HingeEmbeddingLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabelmarginloss"><span class="hidden-section">MultiLabelMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#smoothl1loss"><span class="hidden-section">SmoothL1Loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmarginloss"><span class="hidden-section">SoftMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabelsoftmarginloss"><span class="hidden-section">MultiLabelSoftMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosineembeddingloss"><span class="hidden-section">CosineEmbeddingLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multimarginloss"><span class="hidden-section">MultiMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#tripletmarginloss"><span class="hidden-section">TripletMarginLoss</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#vision-layers">Vision layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pixelshuffle"><span class="hidden-section">PixelShuffle</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsample"><span class="hidden-section">Upsample</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsamplingnearest2d"><span class="hidden-section">UpsamplingNearest2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsamplingbilinear2d"><span class="hidden-section">UpsamplingBilinear2d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#dataparallel-layers-multi-gpu-distributed">DataParallel layers (multi-GPU, distributed)</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dataparallel"><span class="hidden-section">DataParallel</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#distributeddataparallel"><span class="hidden-section">DistributedDataParallel</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#utilities">Utilities</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#clip-grad-norm"><span class="hidden-section">clip_grad_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#weight-norm"><span class="hidden-section">weight_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#remove-weight-norm"><span class="hidden-section">remove_weight_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#packedsequence"><span class="hidden-section">PackedSequence</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pack-padded-sequence"><span class="hidden-section">pack_padded_sequence</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pad-packed-sequence"><span class="hidden-section">pad_packed_sequence</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-functional">torch.nn.functional</a><ul>
<li class="toctree-l2"><a class="reference internal" href="nn.html#convolution-functions">Convolution functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id14"><span class="hidden-section">conv1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id15"><span class="hidden-section">conv2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id16"><span class="hidden-section">conv3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv-transpose1d"><span class="hidden-section">conv_transpose1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv-transpose2d"><span class="hidden-section">conv_transpose2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv-transpose3d"><span class="hidden-section">conv_transpose3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#pooling-functions">Pooling functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avg-pool1d"><span class="hidden-section">avg_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avg-pool2d"><span class="hidden-section">avg_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avg-pool3d"><span class="hidden-section">avg_pool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-pool1d"><span class="hidden-section">max_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-pool2d"><span class="hidden-section">max_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-pool3d"><span class="hidden-section">max_pool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-unpool1d"><span class="hidden-section">max_unpool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-unpool2d"><span class="hidden-section">max_unpool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-unpool3d"><span class="hidden-section">max_unpool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lp-pool2d"><span class="hidden-section">lp_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-max-pool1d"><span class="hidden-section">adaptive_max_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-max-pool2d"><span class="hidden-section">adaptive_max_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-max-pool3d"><span class="hidden-section">adaptive_max_pool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-avg-pool1d"><span class="hidden-section">adaptive_avg_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-avg-pool2d"><span class="hidden-section">adaptive_avg_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-avg-pool3d"><span class="hidden-section">adaptive_avg_pool3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#non-linear-activation-functions">Non-linear activation functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id17"><span class="hidden-section">threshold</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id18"><span class="hidden-section">relu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id19"><span class="hidden-section">hardtanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id20"><span class="hidden-section">relu6</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id21"><span class="hidden-section">elu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id22"><span class="hidden-section">selu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#leaky-relu"><span class="hidden-section">leaky_relu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id23"><span class="hidden-section">prelu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#rrelu"><span class="hidden-section">rrelu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#glu"><span class="hidden-section">glu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id24"><span class="hidden-section">logsigmoid</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hardshrink"><span class="hidden-section">hardshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id25"><span class="hidden-section">tanhshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id26"><span class="hidden-section">softsign</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id27"><span class="hidden-section">softplus</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id28"><span class="hidden-section">softmin</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id29"><span class="hidden-section">softmax</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id30"><span class="hidden-section">softshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#log-softmax"><span class="hidden-section">log_softmax</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id31"><span class="hidden-section">tanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id32"><span class="hidden-section">sigmoid</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#normalization-functions">Normalization functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batch-norm"><span class="hidden-section">batch_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#normalize"><span class="hidden-section">normalize</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#linear-functions">Linear functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id33"><span class="hidden-section">linear</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#dropout-functions">Dropout functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id34"><span class="hidden-section">dropout</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#alpha-dropout"><span class="hidden-section">alpha_dropout</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id35"><span class="hidden-section">dropout2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id36"><span class="hidden-section">dropout3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#id37">Distance functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pairwise-distance"><span class="hidden-section">pairwise_distance</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosine-similarity"><span class="hidden-section">cosine_similarity</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#id38">Loss functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#binary-cross-entropy"><span class="hidden-section">binary_cross_entropy</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#poisson-nll-loss"><span class="hidden-section">poisson_nll_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosine-embedding-loss"><span class="hidden-section">cosine_embedding_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cross-entropy"><span class="hidden-section">cross_entropy</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hinge-embedding-loss"><span class="hidden-section">hinge_embedding_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#kl-div"><span class="hidden-section">kl_div</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#l1-loss"><span class="hidden-section">l1_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#mse-loss"><span class="hidden-section">mse_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#margin-ranking-loss"><span class="hidden-section">margin_ranking_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabel-margin-loss"><span class="hidden-section">multilabel_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabel-soft-margin-loss"><span class="hidden-section">multilabel_soft_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multi-margin-loss"><span class="hidden-section">multi_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#nll-loss"><span class="hidden-section">nll_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#binary-cross-entropy-with-logits"><span class="hidden-section">binary_cross_entropy_with_logits</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#smooth-l1-loss"><span class="hidden-section">smooth_l1_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#soft-margin-loss"><span class="hidden-section">soft_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#triplet-margin-loss"><span class="hidden-section">triplet_margin_loss</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#vision-functions">Vision functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pixel-shuffle"><span class="hidden-section">pixel_shuffle</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pad"><span class="hidden-section">pad</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id40"><span class="hidden-section">upsample</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsample-nearest"><span class="hidden-section">upsample_nearest</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsample-bilinear"><span class="hidden-section">upsample_bilinear</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#grid-sample"><span class="hidden-section">grid_sample</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#affine-grid"><span class="hidden-section">affine_grid</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-init">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torch.optim</a><ul>
<li class="toctree-l2"><a class="reference internal" href="optim.html#how-to-use-an-optimizer">How to use an optimizer</a><ul>
<li class="toctree-l3"><a class="reference internal" href="optim.html#constructing-it">Constructing it</a></li>
<li class="toctree-l3"><a class="reference internal" href="optim.html#per-parameter-options">Per-parameter options</a></li>
<li class="toctree-l3"><a class="reference internal" href="optim.html#taking-an-optimization-step">Taking an optimization step</a><ul>
<li class="toctree-l4"><a class="reference internal" href="optim.html#optimizer-step"><code class="docutils literal"><span class="pre">optimizer.step()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="optim.html#optimizer-step-closure"><code class="docutils literal"><span class="pre">optimizer.step(closure)</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="optim.html#algorithms">Algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="optim.html#how-to-adjust-learning-rate">How to adjust Learning Rate</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">torch.autograd</a><ul>
<li class="toctree-l2"><a class="reference internal" href="autograd.html#variable">Variable</a><ul>
<li class="toctree-l3"><a class="reference internal" href="autograd.html#api-compatibility">API compatibility</a></li>
<li class="toctree-l3"><a class="reference internal" href="autograd.html#in-place-operations-on-variables">In-place operations on Variables</a></li>
<li class="toctree-l3"><a class="reference internal" href="autograd.html#in-place-correctness-checks">In-place correctness checks</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="autograd.html#function"><span class="hidden-section">Function</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="autograd.html#profiler">Profiler</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="distributions.html">torch.distributions</a><ul>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#distribution"><span class="hidden-section">Distribution</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#bernoulli"><span class="hidden-section">Bernoulli</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#categorical"><span class="hidden-section">Categorical</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#normal"><span class="hidden-section">Normal</span></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">torch.multiprocessing</a><ul>
<li class="toctree-l2"><a class="reference internal" href="multiprocessing.html#strategy-management">Strategy management</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiprocessing.html#sharing-cuda-tensors">Sharing CUDA tensors</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiprocessing.html#sharing-strategies">Sharing strategies</a><ul>
<li class="toctree-l3"><a class="reference internal" href="multiprocessing.html#file-descriptor-file-descriptor">File descriptor - <code class="docutils literal"><span class="pre">file_descriptor</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="multiprocessing.html#file-system-file-system">File system - <code class="docutils literal"><span class="pre">file_system</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">torch.distributed</a><ul>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#basics">Basics</a></li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#initialization">Initialization</a><ul>
<li class="toctree-l3"><a class="reference internal" href="distributed.html#tcp-initialization">TCP initialization</a></li>
<li class="toctree-l3"><a class="reference internal" href="distributed.html#shared-file-system-initialization">Shared file-system initialization</a></li>
<li class="toctree-l3"><a class="reference internal" href="distributed.html#environment-variable-initialization">Environment variable initialization</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#groups">Groups</a></li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#point-to-point-communication">Point-to-point communication</a></li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#collective-functions">Collective functions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="legacy.html">torch.legacy</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">torch.cuda</a><ul>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#random-number-generator">Random Number Generator</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#communication-collectives">Communication collectives</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#streams-and-events">Streams and events</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#memory-management">Memory management</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#nvidia-tools-extension-nvtx">NVIDIA Tools Extension (NVTX)</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="ffi.html">torch.utils.ffi</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx.html">torch.onnx</a><ul>
<li class="toctree-l2"><a class="reference internal" href="onnx.html#example-end-to-end-alexnet-from-pytorch-to-caffe2">Example: End-to-end AlexNet from PyTorch to Caffe2</a></li>
<li class="toctree-l2"><a class="reference internal" href="onnx.html#limitations">Limitations</a></li>
<li class="toctree-l2"><a class="reference internal" href="onnx.html#supported-operators">Supported operators</a></li>
<li class="toctree-l2"><a class="reference internal" href="onnx.html#functions">Functions</a></li>
</ul>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">PyTorch</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html">Docs</a> »</li>
<li>torch.utils.data</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/data.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="module-torch.utils.data">
<span id="torch-utils-data"></span><h1>torch.utils.data<a class="headerlink" href="#module-torch.utils.data" title="Permalink to this headline">¶</a></h1>
<dl class="class">
<dt id="torch.utils.data.Dataset">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">Dataset</code><a class="reference internal" href="_modules/torch/utils/data/dataset.html#Dataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.Dataset" title="Permalink to this definition">¶</a></dt>
<dd><p>An abstract class representing a Dataset.</p>
<p>All other datasets should subclass it. All subclasses should override
<code class="docutils literal"><span class="pre">__len__</span></code>, that provides the size of the dataset, and <code class="docutils literal"><span class="pre">__getitem__</span></code>,
supporting integer indexing in range from 0 to len(self) exclusive.</p>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.TensorDataset">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">TensorDataset</code><span class="sig-paren">(</span><em>data_tensor</em>, <em>target_tensor</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataset.html#TensorDataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.TensorDataset" title="Permalink to this definition">¶</a></dt>
<dd><p>Dataset wrapping data and target tensors.</p>
<p>Each sample will be retrieved by indexing both tensors along the first
dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data_tensor</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – contains sample data.</li>
<li><strong>target_tensor</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – contains sample targets (labels).</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.ConcatDataset">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">ConcatDataset</code><span class="sig-paren">(</span><em>datasets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataset.html#ConcatDataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.ConcatDataset" title="Permalink to this definition">¶</a></dt>
<dd><p>Dataset to concatenate multiple datasets.
Purpose: useful to assemble different existing datasets, possibly
large-scale datasets as the concatenation operation is done in an
on-the-fly manner.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>datasets</strong> (<em>iterable</em>) – List of datasets to be concatenated</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.DataLoader">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">DataLoader</code><span class="sig-paren">(</span><em>dataset</em>, <em>batch_size=1</em>, <em>shuffle=False</em>, <em>sampler=None</em>, <em>batch_sampler=None</em>, <em>num_workers=0</em>, <em>collate_fn=<function default_collate></em>, <em>pin_memory=False</em>, <em>drop_last=False</em>, <em>timeout=0</em>, <em>worker_init_fn=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataloader.html#DataLoader"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.DataLoader" title="Permalink to this definition">¶</a></dt>
<dd><p>Data loader. Combines a dataset and a sampler, and provides
single- or multi-process iterators over the dataset.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dataset</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – dataset from which to load the data.</li>
<li><strong>batch_size</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#int" title="(in Python v2.7)"><em>int</em></a><em>, </em><em>optional</em>) – how many samples per batch to load
(default: 1).</li>
<li><strong>shuffle</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#bool" title="(in Python v2.7)"><em>bool</em></a><em>, </em><em>optional</em>) – set to <code class="docutils literal"><span class="pre">True</span></code> to have the data reshuffled
at every epoch (default: False).</li>
<li><strong>sampler</strong> (<a class="reference internal" href="#torch.utils.data.sampler.Sampler" title="torch.utils.data.sampler.Sampler"><em>Sampler</em></a><em>, </em><em>optional</em>) – defines the strategy to draw samples from
the dataset. If specified, <code class="docutils literal"><span class="pre">shuffle</span></code> must be False.</li>
<li><strong>batch_sampler</strong> (<a class="reference internal" href="#torch.utils.data.sampler.Sampler" title="torch.utils.data.sampler.Sampler"><em>Sampler</em></a><em>, </em><em>optional</em>) – like sampler, but returns a batch of
indices at a time. Mutually exclusive with batch_size, shuffle,
sampler, and drop_last.</li>
<li><strong>num_workers</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#int" title="(in Python v2.7)"><em>int</em></a><em>, </em><em>optional</em>) – how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process.
(default: 0)</li>
<li><strong>collate_fn</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#callable" title="(in Python v2.7)"><em>callable</em></a><em>, </em><em>optional</em>) – merges a list of samples to form a mini-batch.</li>
<li><strong>pin_memory</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#bool" title="(in Python v2.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If <code class="docutils literal"><span class="pre">True</span></code>, the data loader will copy tensors
into CUDA pinned memory before returning them.</li>
<li><strong>drop_last</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#bool" title="(in Python v2.7)"><em>bool</em></a><em>, </em><em>optional</em>) – set to <code class="docutils literal"><span class="pre">True</span></code> to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If <code class="docutils literal"><span class="pre">False</span></code> and
the size of dataset is not divisible by the batch size, then the last batch
will be smaller. (default: False)</li>
<li><strong>timeout</strong> (<em>numeric</em><em>, </em><em>optional</em>) – if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: 0)</li>
<li><strong>worker_init_fn</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#callable" title="(in Python v2.7)"><em>callable</em></a><em>, </em><em>optional</em>) – If not None, this will be called on each
worker subprocess with the worker id (an int in <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">num_workers</span> <span class="pre">-</span> <span class="pre">1]</span></code>) as
input, after seeding and before data loading. (default: None)</li>
</ul>
</td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">By default, each worker will have its PyTorch seed set to
<code class="docutils literal"><span class="pre">base_seed</span> <span class="pre">+</span> <span class="pre">worker_id</span></code>, where <code class="docutils literal"><span class="pre">base_seed</span></code> is a long generated
by main process using its RNG. You may use <code class="docutils literal"><span class="pre">torch.initial_seed()</span></code> to access
this value in <code class="xref py py-attr docutils literal"><span class="pre">worker_init_fn</span></code>, which can be used to set other seeds
(e.g. NumPy) before data loading.</p>
</div>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">If <a href="#id1"><span class="problematic" id="id2">``</span></a>spawn’’ start method is used, <code class="xref py py-attr docutils literal"><span class="pre">worker_init_fn</span></code> cannot be an
unpicklable object, e.g., a lambda function.</p>
</div>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.sampler.Sampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.sampler.</code><code class="descname">Sampler</code><span class="sig-paren">(</span><em>data_source</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#Sampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.sampler.Sampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Base class for all Samplers.</p>
<p>Every Sampler subclass has to provide an __iter__ method, providing a way
to iterate over indices of dataset elements, and a __len__ method that
returns the length of the returned iterators.</p>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.sampler.SequentialSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.sampler.</code><code class="descname">SequentialSampler</code><span class="sig-paren">(</span><em>data_source</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#SequentialSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.sampler.SequentialSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements sequentially, always in the same order.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data_source</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – dataset to sample from</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.sampler.RandomSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.sampler.</code><code class="descname">RandomSampler</code><span class="sig-paren">(</span><em>data_source</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#RandomSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.sampler.RandomSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements randomly, without replacement.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data_source</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – dataset to sample from</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.sampler.SubsetRandomSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.sampler.</code><code class="descname">SubsetRandomSampler</code><span class="sig-paren">(</span><em>indices</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#SubsetRandomSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.sampler.SubsetRandomSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements randomly from a given list of indices, without replacement.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>indices</strong> (<em>list</em>) – a list of indices</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.sampler.WeightedRandomSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.sampler.</code><code class="descname">WeightedRandomSampler</code><span class="sig-paren">(</span><em>weights</em>, <em>num_samples</em>, <em>replacement=True</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#WeightedRandomSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.sampler.WeightedRandomSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements from [0,..,len(weights)-1] with given probabilities (weights).</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>weights</strong> (<em>list</em>) – a list of weights, not necessary summing up to one</li>
<li><strong>num_samples</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#int" title="(in Python v2.7)"><em>int</em></a>) – number of samples to draw</li>
<li><strong>replacement</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#bool" title="(in Python v2.7)"><em>bool</em></a>) – if <code class="docutils literal"><span class="pre">True</span></code>, samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a
sample index is drawn for a row, it cannot be drawn again for that row.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.distributed.DistributedSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.distributed.</code><code class="descname">DistributedSampler</code><span class="sig-paren">(</span><em>dataset</em>, <em>num_replicas=None</em>, <em>rank=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/distributed.html#DistributedSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.distributed.DistributedSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Sampler that restricts data loading to a subset of the dataset.</p>
<p>It is especially useful in conjunction with
<a class="reference internal" href="nn.html#torch.nn.parallel.DistributedDataParallel" title="torch.nn.parallel.DistributedDataParallel"><code class="xref py py-class docutils literal"><span class="pre">torch.nn.parallel.DistributedDataParallel</span></code></a>. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Dataset is assumed to be of constant size.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dataset</strong> – Dataset used for sampling.</li>
<li><strong>num_replicas</strong> (<em>optional</em>) – Number of processes participating in
distributed training.</li>
<li><strong>rank</strong> (<em>optional</em>) – Rank of the current process within num_replicas.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="model_zoo.html" class="btn btn-neutral float-right" title="torch.utils.model_zoo" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="ffi.html" class="btn btn-neutral" title="torch.utils.ffi" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2017, Torch Contributors.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'master',
LANGUAGE:'None',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enableSticky();
});
</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-90545585-1', 'auto');
ga('send', 'pageview');
</script>
</body>
</html>