forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx.html
886 lines (751 loc) · 67.6 KB
/
onnx.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torch.onnx — PyTorch master documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Lato" type="text/css" />
<link rel="stylesheet" href="_static/css/pytorch_theme.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="prev" title="torch.utils.model_zoo" href="model_zoo.html" />
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search">
<a href="index.html">
<img src="_static/pytorch-logo-dark.svg" class="logo" alt="Logo"/>
</a>
<div class="version">
0.3.1 <br/> <a href="https://pytorch.org/docs/versions.html"> version selector ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/autograd.html">Autograd mechanics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#excluding-subgraphs-from-backward">Excluding subgraphs from backward</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/autograd.html#requires-grad"><code class="docutils literal"><span class="pre">requires_grad</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/autograd.html#volatile"><code class="docutils literal"><span class="pre">volatile</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#how-autograd-encodes-the-history">How autograd encodes the history</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#in-place-operations-on-variables">In-place operations on Variables</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/autograd.html#in-place-correctness-checks">In-place correctness checks</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/broadcasting.html">Broadcasting semantics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/broadcasting.html#general-semantics">General semantics</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/broadcasting.html#in-place-semantics">In-place semantics</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/broadcasting.html#backwards-compatibility">Backwards compatibility</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/cuda.html">CUDA semantics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/cuda.html#asynchronous-execution">Asynchronous execution</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#cuda-streams">CUDA streams</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="notes/cuda.html#memory-management">Memory management</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/cuda.html#best-practices">Best practices</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#device-agnostic-code">Device-agnostic code</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#use-pinned-memory-buffers">Use pinned memory buffers</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/cuda.html#use-nn-dataparallel-instead-of-multiprocessing">Use nn.DataParallel instead of multiprocessing</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.html">Extending PyTorch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/extending.html#extending-torch-autograd">Extending <code class="docutils literal"><span class="pre">torch.autograd</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/extending.html#extending-torch-nn">Extending <code class="docutils literal"><span class="pre">torch.nn</span></code></a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/extending.html#adding-a-module">Adding a <code class="docutils literal"><span class="pre">Module</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="notes/extending.html#writing-custom-c-extensions">Writing custom C extensions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/multiprocessing.html">Multiprocessing best practices</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/multiprocessing.html#sharing-cuda-tensors">Sharing CUDA tensors</a></li>
<li class="toctree-l2"><a class="reference internal" href="notes/multiprocessing.html#best-practices-and-tips">Best practices and tips</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/multiprocessing.html#avoiding-and-fighting-deadlocks">Avoiding and fighting deadlocks</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/multiprocessing.html#reuse-buffers-passed-through-a-queue">Reuse buffers passed through a Queue</a></li>
<li class="toctree-l3"><a class="reference internal" href="notes/multiprocessing.html#asynchronous-multiprocess-training-e-g-hogwild">Asynchronous multiprocess training (e.g. Hogwild)</a><ul>
<li class="toctree-l4"><a class="reference internal" href="notes/multiprocessing.html#hogwild">Hogwild</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="notes/serialization.html">Serialization semantics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="notes/serialization.html#best-practices">Best practices</a><ul>
<li class="toctree-l3"><a class="reference internal" href="notes/serialization.html#recommended-approach-for-saving-a-model">Recommended approach for saving a model</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="torch.html">torch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="torch.html#tensors">Tensors</a><ul>
<li class="toctree-l3"><a class="reference internal" href="torch.html#creation-ops">Creation Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#indexing-slicing-joining-mutating-ops">Indexing, Slicing, Joining, Mutating Ops</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#random-sampling">Random sampling</a><ul>
<li class="toctree-l3"><a class="reference internal" href="torch.html#in-place-random-sampling">In-place random sampling</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#serialization">Serialization</a></li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#parallelism">Parallelism</a></li>
<li class="toctree-l2"><a class="reference internal" href="torch.html#math-operations">Math operations</a><ul>
<li class="toctree-l3"><a class="reference internal" href="torch.html#pointwise-ops">Pointwise Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#reduction-ops">Reduction Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#comparison-ops">Comparison Ops</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#other-operations">Other Operations</a></li>
<li class="toctree-l3"><a class="reference internal" href="torch.html#blas-and-lapack-operations">BLAS and LAPACK Operations</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html">torch.nn</a><ul>
<li class="toctree-l2"><a class="reference internal" href="nn.html#parameters">Parameters</a></li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#containers">Containers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#module"><span class="hidden-section">Module</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#sequential"><span class="hidden-section">Sequential</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#modulelist"><span class="hidden-section">ModuleList</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#parameterlist"><span class="hidden-section">ParameterList</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#convolution-layers">Convolution Layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv1d"><span class="hidden-section">Conv1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv2d"><span class="hidden-section">Conv2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv3d"><span class="hidden-section">Conv3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#convtranspose1d"><span class="hidden-section">ConvTranspose1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#convtranspose2d"><span class="hidden-section">ConvTranspose2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#convtranspose3d"><span class="hidden-section">ConvTranspose3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#pooling-layers">Pooling Layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxpool1d"><span class="hidden-section">MaxPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxpool2d"><span class="hidden-section">MaxPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxpool3d"><span class="hidden-section">MaxPool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxunpool1d"><span class="hidden-section">MaxUnpool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxunpool2d"><span class="hidden-section">MaxUnpool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#maxunpool3d"><span class="hidden-section">MaxUnpool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avgpool1d"><span class="hidden-section">AvgPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avgpool2d"><span class="hidden-section">AvgPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avgpool3d"><span class="hidden-section">AvgPool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#fractionalmaxpool2d"><span class="hidden-section">FractionalMaxPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lppool2d"><span class="hidden-section">LPPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptivemaxpool1d"><span class="hidden-section">AdaptiveMaxPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptivemaxpool2d"><span class="hidden-section">AdaptiveMaxPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptivemaxpool3d"><span class="hidden-section">AdaptiveMaxPool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptiveavgpool1d"><span class="hidden-section">AdaptiveAvgPool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptiveavgpool2d"><span class="hidden-section">AdaptiveAvgPool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptiveavgpool3d"><span class="hidden-section">AdaptiveAvgPool3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#padding-layers">Padding Layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#reflectionpad2d"><span class="hidden-section">ReflectionPad2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#replicationpad2d"><span class="hidden-section">ReplicationPad2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#replicationpad3d"><span class="hidden-section">ReplicationPad3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#zeropad2d"><span class="hidden-section">ZeroPad2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#constantpad2d"><span class="hidden-section">ConstantPad2d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#non-linear-activations">Non-linear Activations</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#relu"><span class="hidden-section">ReLU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#relu6"><span class="hidden-section">ReLU6</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#elu"><span class="hidden-section">ELU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#selu"><span class="hidden-section">SELU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#prelu"><span class="hidden-section">PReLU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#leakyrelu"><span class="hidden-section">LeakyReLU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#threshold"><span class="hidden-section">Threshold</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hardtanh"><span class="hidden-section">Hardtanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#sigmoid"><span class="hidden-section">Sigmoid</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#tanh"><span class="hidden-section">Tanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#logsigmoid"><span class="hidden-section">LogSigmoid</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softplus"><span class="hidden-section">Softplus</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softshrink"><span class="hidden-section">Softshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softsign"><span class="hidden-section">Softsign</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#tanhshrink"><span class="hidden-section">Tanhshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmin"><span class="hidden-section">Softmin</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmax"><span class="hidden-section">Softmax</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmax2d"><span class="hidden-section">Softmax2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#logsoftmax"><span class="hidden-section">LogSoftmax</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#normalization-layers">Normalization layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batchnorm1d"><span class="hidden-section">BatchNorm1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batchnorm2d"><span class="hidden-section">BatchNorm2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batchnorm3d"><span class="hidden-section">BatchNorm3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#instancenorm1d"><span class="hidden-section">InstanceNorm1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#instancenorm2d"><span class="hidden-section">InstanceNorm2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#instancenorm3d"><span class="hidden-section">InstanceNorm3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#recurrent-layers">Recurrent layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#rnn"><span class="hidden-section">RNN</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lstm"><span class="hidden-section">LSTM</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#gru"><span class="hidden-section">GRU</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#rnncell"><span class="hidden-section">RNNCell</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lstmcell"><span class="hidden-section">LSTMCell</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#grucell"><span class="hidden-section">GRUCell</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#linear-layers">Linear layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#linear"><span class="hidden-section">Linear</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#bilinear"><span class="hidden-section">Bilinear</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#dropout-layers">Dropout layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dropout"><span class="hidden-section">Dropout</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dropout2d"><span class="hidden-section">Dropout2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dropout3d"><span class="hidden-section">Dropout3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#alphadropout"><span class="hidden-section">AlphaDropout</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#sparse-layers">Sparse layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#embedding"><span class="hidden-section">Embedding</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#embeddingbag"><span class="hidden-section">EmbeddingBag</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#distance-functions">Distance functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosinesimilarity"><span class="hidden-section">CosineSimilarity</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pairwisedistance"><span class="hidden-section">PairwiseDistance</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#loss-functions">Loss functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#l1loss"><span class="hidden-section">L1Loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#mseloss"><span class="hidden-section">MSELoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#crossentropyloss"><span class="hidden-section">CrossEntropyLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#nllloss"><span class="hidden-section">NLLLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#poissonnllloss"><span class="hidden-section">PoissonNLLLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#nllloss2d"><span class="hidden-section">NLLLoss2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#kldivloss"><span class="hidden-section">KLDivLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#bceloss"><span class="hidden-section">BCELoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#bcewithlogitsloss"><span class="hidden-section">BCEWithLogitsLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#marginrankingloss"><span class="hidden-section">MarginRankingLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hingeembeddingloss"><span class="hidden-section">HingeEmbeddingLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabelmarginloss"><span class="hidden-section">MultiLabelMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#smoothl1loss"><span class="hidden-section">SmoothL1Loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#softmarginloss"><span class="hidden-section">SoftMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabelsoftmarginloss"><span class="hidden-section">MultiLabelSoftMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosineembeddingloss"><span class="hidden-section">CosineEmbeddingLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multimarginloss"><span class="hidden-section">MultiMarginLoss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#tripletmarginloss"><span class="hidden-section">TripletMarginLoss</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#vision-layers">Vision layers</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pixelshuffle"><span class="hidden-section">PixelShuffle</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsample"><span class="hidden-section">Upsample</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsamplingnearest2d"><span class="hidden-section">UpsamplingNearest2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsamplingbilinear2d"><span class="hidden-section">UpsamplingBilinear2d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#dataparallel-layers-multi-gpu-distributed">DataParallel layers (multi-GPU, distributed)</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#dataparallel"><span class="hidden-section">DataParallel</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#distributeddataparallel"><span class="hidden-section">DistributedDataParallel</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#utilities">Utilities</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#clip-grad-norm"><span class="hidden-section">clip_grad_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#weight-norm"><span class="hidden-section">weight_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#remove-weight-norm"><span class="hidden-section">remove_weight_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#packedsequence"><span class="hidden-section">PackedSequence</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pack-padded-sequence"><span class="hidden-section">pack_padded_sequence</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pad-packed-sequence"><span class="hidden-section">pad_packed_sequence</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-functional">torch.nn.functional</a><ul>
<li class="toctree-l2"><a class="reference internal" href="nn.html#convolution-functions">Convolution functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id14"><span class="hidden-section">conv1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id15"><span class="hidden-section">conv2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id16"><span class="hidden-section">conv3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv-transpose1d"><span class="hidden-section">conv_transpose1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv-transpose2d"><span class="hidden-section">conv_transpose2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#conv-transpose3d"><span class="hidden-section">conv_transpose3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#pooling-functions">Pooling functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avg-pool1d"><span class="hidden-section">avg_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avg-pool2d"><span class="hidden-section">avg_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#avg-pool3d"><span class="hidden-section">avg_pool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-pool1d"><span class="hidden-section">max_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-pool2d"><span class="hidden-section">max_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-pool3d"><span class="hidden-section">max_pool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-unpool1d"><span class="hidden-section">max_unpool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-unpool2d"><span class="hidden-section">max_unpool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#max-unpool3d"><span class="hidden-section">max_unpool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#lp-pool2d"><span class="hidden-section">lp_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-max-pool1d"><span class="hidden-section">adaptive_max_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-max-pool2d"><span class="hidden-section">adaptive_max_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-max-pool3d"><span class="hidden-section">adaptive_max_pool3d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-avg-pool1d"><span class="hidden-section">adaptive_avg_pool1d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-avg-pool2d"><span class="hidden-section">adaptive_avg_pool2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#adaptive-avg-pool3d"><span class="hidden-section">adaptive_avg_pool3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#non-linear-activation-functions">Non-linear activation functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id17"><span class="hidden-section">threshold</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id18"><span class="hidden-section">relu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id19"><span class="hidden-section">hardtanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id20"><span class="hidden-section">relu6</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id21"><span class="hidden-section">elu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id22"><span class="hidden-section">selu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#leaky-relu"><span class="hidden-section">leaky_relu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id23"><span class="hidden-section">prelu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#rrelu"><span class="hidden-section">rrelu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#glu"><span class="hidden-section">glu</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id24"><span class="hidden-section">logsigmoid</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hardshrink"><span class="hidden-section">hardshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id25"><span class="hidden-section">tanhshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id26"><span class="hidden-section">softsign</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id27"><span class="hidden-section">softplus</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id28"><span class="hidden-section">softmin</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id29"><span class="hidden-section">softmax</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id30"><span class="hidden-section">softshrink</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#log-softmax"><span class="hidden-section">log_softmax</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id31"><span class="hidden-section">tanh</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id32"><span class="hidden-section">sigmoid</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#normalization-functions">Normalization functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#batch-norm"><span class="hidden-section">batch_norm</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#normalize"><span class="hidden-section">normalize</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#linear-functions">Linear functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id33"><span class="hidden-section">linear</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#dropout-functions">Dropout functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id34"><span class="hidden-section">dropout</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#alpha-dropout"><span class="hidden-section">alpha_dropout</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id35"><span class="hidden-section">dropout2d</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id36"><span class="hidden-section">dropout3d</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#id37">Distance functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pairwise-distance"><span class="hidden-section">pairwise_distance</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosine-similarity"><span class="hidden-section">cosine_similarity</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#id38">Loss functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#binary-cross-entropy"><span class="hidden-section">binary_cross_entropy</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#poisson-nll-loss"><span class="hidden-section">poisson_nll_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cosine-embedding-loss"><span class="hidden-section">cosine_embedding_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#cross-entropy"><span class="hidden-section">cross_entropy</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#hinge-embedding-loss"><span class="hidden-section">hinge_embedding_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#kl-div"><span class="hidden-section">kl_div</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#l1-loss"><span class="hidden-section">l1_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#mse-loss"><span class="hidden-section">mse_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#margin-ranking-loss"><span class="hidden-section">margin_ranking_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabel-margin-loss"><span class="hidden-section">multilabel_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multilabel-soft-margin-loss"><span class="hidden-section">multilabel_soft_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#multi-margin-loss"><span class="hidden-section">multi_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#nll-loss"><span class="hidden-section">nll_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#binary-cross-entropy-with-logits"><span class="hidden-section">binary_cross_entropy_with_logits</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#smooth-l1-loss"><span class="hidden-section">smooth_l1_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#soft-margin-loss"><span class="hidden-section">soft_margin_loss</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#triplet-margin-loss"><span class="hidden-section">triplet_margin_loss</span></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="nn.html#vision-functions">Vision functions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pixel-shuffle"><span class="hidden-section">pixel_shuffle</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#pad"><span class="hidden-section">pad</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#id40"><span class="hidden-section">upsample</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsample-nearest"><span class="hidden-section">upsample_nearest</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#upsample-bilinear"><span class="hidden-section">upsample_bilinear</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#grid-sample"><span class="hidden-section">grid_sample</span></a></li>
<li class="toctree-l3"><a class="reference internal" href="nn.html#affine-grid"><span class="hidden-section">affine_grid</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-init">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torch.optim</a><ul>
<li class="toctree-l2"><a class="reference internal" href="optim.html#how-to-use-an-optimizer">How to use an optimizer</a><ul>
<li class="toctree-l3"><a class="reference internal" href="optim.html#constructing-it">Constructing it</a></li>
<li class="toctree-l3"><a class="reference internal" href="optim.html#per-parameter-options">Per-parameter options</a></li>
<li class="toctree-l3"><a class="reference internal" href="optim.html#taking-an-optimization-step">Taking an optimization step</a><ul>
<li class="toctree-l4"><a class="reference internal" href="optim.html#optimizer-step"><code class="docutils literal"><span class="pre">optimizer.step()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="optim.html#optimizer-step-closure"><code class="docutils literal"><span class="pre">optimizer.step(closure)</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="optim.html#algorithms">Algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="optim.html#how-to-adjust-learning-rate">How to adjust Learning Rate</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">torch.autograd</a><ul>
<li class="toctree-l2"><a class="reference internal" href="autograd.html#variable">Variable</a><ul>
<li class="toctree-l3"><a class="reference internal" href="autograd.html#api-compatibility">API compatibility</a></li>
<li class="toctree-l3"><a class="reference internal" href="autograd.html#in-place-operations-on-variables">In-place operations on Variables</a></li>
<li class="toctree-l3"><a class="reference internal" href="autograd.html#in-place-correctness-checks">In-place correctness checks</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="autograd.html#function"><span class="hidden-section">Function</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="autograd.html#profiler">Profiler</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="distributions.html">torch.distributions</a><ul>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#distribution"><span class="hidden-section">Distribution</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#bernoulli"><span class="hidden-section">Bernoulli</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#categorical"><span class="hidden-section">Categorical</span></a></li>
<li class="toctree-l2"><a class="reference internal" href="distributions.html#normal"><span class="hidden-section">Normal</span></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">torch.multiprocessing</a><ul>
<li class="toctree-l2"><a class="reference internal" href="multiprocessing.html#strategy-management">Strategy management</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiprocessing.html#sharing-cuda-tensors">Sharing CUDA tensors</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiprocessing.html#sharing-strategies">Sharing strategies</a><ul>
<li class="toctree-l3"><a class="reference internal" href="multiprocessing.html#file-descriptor-file-descriptor">File descriptor - <code class="docutils literal"><span class="pre">file_descriptor</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="multiprocessing.html#file-system-file-system">File system - <code class="docutils literal"><span class="pre">file_system</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">torch.distributed</a><ul>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#basics">Basics</a></li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#initialization">Initialization</a><ul>
<li class="toctree-l3"><a class="reference internal" href="distributed.html#tcp-initialization">TCP initialization</a></li>
<li class="toctree-l3"><a class="reference internal" href="distributed.html#shared-file-system-initialization">Shared file-system initialization</a></li>
<li class="toctree-l3"><a class="reference internal" href="distributed.html#environment-variable-initialization">Environment variable initialization</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#groups">Groups</a></li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#point-to-point-communication">Point-to-point communication</a></li>
<li class="toctree-l2"><a class="reference internal" href="distributed.html#collective-functions">Collective functions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="legacy.html">torch.legacy</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">torch.cuda</a><ul>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#random-number-generator">Random Number Generator</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#communication-collectives">Communication collectives</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#streams-and-events">Streams and events</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#memory-management">Memory management</a></li>
<li class="toctree-l2"><a class="reference internal" href="cuda.html#nvidia-tools-extension-nvtx">NVIDIA Tools Extension (NVTX)</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="ffi.html">torch.utils.ffi</a></li>
<li class="toctree-l1"><a class="reference internal" href="data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">torch.onnx</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#example-end-to-end-alexnet-from-pytorch-to-caffe2">Example: End-to-end AlexNet from PyTorch to Caffe2</a></li>
<li class="toctree-l2"><a class="reference internal" href="#limitations">Limitations</a></li>
<li class="toctree-l2"><a class="reference internal" href="#supported-operators">Supported operators</a></li>
<li class="toctree-l2"><a class="reference internal" href="#functions">Functions</a></li>
</ul>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">PyTorch</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html">Docs</a> »</li>
<li>torch.onnx</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/onnx.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="module-torch.onnx">
<span id="torch-onnx"></span><h1>torch.onnx<a class="headerlink" href="#module-torch.onnx" title="Permalink to this headline">¶</a></h1>
<p>The torch.onnx module contains functions to export models into the ONNX
IR format. These models can be loaded with the ONNX library and then
converted to models which run on other deep learning frameworks.</p>
<div class="section" id="example-end-to-end-alexnet-from-pytorch-to-caffe2">
<h2>Example: End-to-end AlexNet from PyTorch to Caffe2<a class="headerlink" href="#example-end-to-end-alexnet-from-pytorch-to-caffe2" title="Permalink to this headline">¶</a></h2>
<p>Here is a simple script which exports a pretrained AlexNet as defined in
torchvision into ONNX. It runs a single round of inference and then
saves the resulting traced model to <code class="docutils literal"><span class="pre">alexnet.proto</span></code>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">torch.autograd</span> <span class="k">import</span> <span class="n">Variable</span>
<span class="kn">import</span> <span class="nn">torch.onnx</span>
<span class="kn">import</span> <span class="nn">torchvision</span>
<span class="n">dummy_input</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">))</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">alexnet</span><span class="p">(</span><span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">torch</span><span class="o">.</span><span class="n">onnx</span><span class="o">.</span><span class="n">export</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">dummy_input</span><span class="p">,</span> <span class="s2">"alexnet.proto"</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p>The resulting <code class="docutils literal"><span class="pre">alexnet.proto</span></code> is a binary protobuf file which contains both
the network structure and parameters of the model you exported
(in this case, AlexNet). The keyword argument <code class="docutils literal"><span class="pre">verbose=True</span></code> causes the
exporter to print out a human-readable representation of the network:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="c1"># All parameters are encoded explicitly as inputs. By convention,</span>
<span class="c1"># learned parameters (ala nn.Module.state_dict) are first, and the</span>
<span class="c1"># actual inputs are last.</span>
<span class="n">graph</span><span class="p">(</span><span class="o">%</span><span class="mi">1</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">11</span><span class="p">)</span>
<span class="o">%</span><span class="mi">2</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">64</span><span class="p">)</span>
<span class="c1"># The definition sites of all variables are annotated with type</span>
<span class="c1"># information, specifying the type and size of tensors.</span>
<span class="c1"># For example, %3 is a 192 x 64 x 5 x 5 tensor of floats.</span>
<span class="o">%</span><span class="mi">3</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">192</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="o">%</span><span class="mi">4</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">192</span><span class="p">)</span>
<span class="c1"># ---- omitted for brevity ----</span>
<span class="o">%</span><span class="mi">15</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">1000</span><span class="p">,</span> <span class="mi">4096</span><span class="p">)</span>
<span class="o">%</span><span class="mi">16</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">1000</span><span class="p">)</span>
<span class="o">%</span><span class="mi">17</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">))</span> <span class="p">{</span> <span class="c1"># the actual input!</span>
<span class="c1"># Every statement consists of some output tensors (and their types),</span>
<span class="c1"># the operator to be run (with its attributes, e.g., kernels, strides,</span>
<span class="c1"># etc.), its input tensors (%17, %1)</span>
<span class="o">%</span><span class="mi">19</span> <span class="p">:</span> <span class="n">UNKNOWN_TYPE</span> <span class="o">=</span> <span class="n">Conv</span><span class="p">[</span><span class="n">kernels</span><span class="o">=</span><span class="p">[</span><span class="mi">11</span><span class="p">,</span> <span class="mi">11</span><span class="p">],</span> <span class="n">strides</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="n">pads</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="n">dilations</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">group</span><span class="o">=</span><span class="mi">1</span><span class="p">](</span><span class="o">%</span><span class="mi">17</span><span class="p">,</span> <span class="o">%</span><span class="mi">1</span><span class="p">),</span> <span class="n">uses</span> <span class="o">=</span> <span class="p">[[</span><span class="o">%</span><span class="mf">20.</span><span class="n">i0</span><span class="p">]];</span>
<span class="c1"># UNKNOWN_TYPE: sometimes type information is not known. We hope to eliminate</span>
<span class="c1"># all such cases in a later release.</span>
<span class="o">%</span><span class="mi">20</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">55</span><span class="p">,</span> <span class="mi">55</span><span class="p">)</span> <span class="o">=</span> <span class="n">Add</span><span class="p">[</span><span class="n">broadcast</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">](</span><span class="o">%</span><span class="mi">19</span><span class="p">,</span> <span class="o">%</span><span class="mi">2</span><span class="p">),</span> <span class="n">uses</span> <span class="o">=</span> <span class="p">[</span><span class="o">%</span><span class="mf">21.</span><span class="n">i0</span><span class="p">];</span>
<span class="o">%</span><span class="mi">21</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">55</span><span class="p">,</span> <span class="mi">55</span><span class="p">)</span> <span class="o">=</span> <span class="n">Relu</span><span class="p">(</span><span class="o">%</span><span class="mi">20</span><span class="p">),</span> <span class="n">uses</span> <span class="o">=</span> <span class="p">[</span><span class="o">%</span><span class="mf">22.</span><span class="n">i0</span><span class="p">];</span>
<span class="o">%</span><span class="mi">22</span> <span class="p">:</span> <span class="n">Float</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">27</span><span class="p">,</span> <span class="mi">27</span><span class="p">)</span> <span class="o">=</span> <span class="n">MaxPool</span><span class="p">[</span><span class="n">kernels</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="n">pads</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">dilations</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">strides</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">]](</span><span class="o">%</span><span class="mi">21</span><span class="p">),</span> <span class="n">uses</span> <span class="o">=</span> <span class="p">[</span><span class="o">%</span><span class="mf">23.</span><span class="n">i0</span><span class="p">];</span>
<span class="c1"># ...</span>
<span class="c1"># Finally, a network returns some tensors</span>
<span class="k">return</span> <span class="p">(</span><span class="o">%</span><span class="mi">58</span><span class="p">);</span>
<span class="p">}</span>
</pre></div>
</div>
<p>You can also verify the protobuf using the <a class="reference external" href="https://github.com/onnx/onnx/">onnx</a> library.
You can install <code class="docutils literal"><span class="pre">onnx</span></code> with conda:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">conda</span> <span class="n">install</span> <span class="o">-</span><span class="n">c</span> <span class="n">conda</span><span class="o">-</span><span class="n">forge</span> <span class="n">onnx</span>
</pre></div>
</div>
<p>Then, you can run:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">onnx</span>
<span class="c1"># Load the ONNX model</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">onnx</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"alexnet.proto"</span><span class="p">)</span>
<span class="c1"># Check that the IR is well formed</span>
<span class="n">onnx</span><span class="o">.</span><span class="n">checker</span><span class="o">.</span><span class="n">check_model</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="c1"># Print a human readable representation of the graph</span>
<span class="n">onnx</span><span class="o">.</span><span class="n">helper</span><span class="o">.</span><span class="n">printable_graph</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">graph</span><span class="p">)</span>
</pre></div>
</div>
<p>To run the exported script with <a class="reference external" href="https://caffe2.ai/">caffe2</a>, you will need three things:</p>
<ol class="arabic">
<li><p class="first">You’ll need an install of Caffe2. If you don’t have one already, Please
<a class="reference external" href="https://caffe2.ai/docs/getting-started.html">follow the install instructions</a>.</p>
</li>
<li><p class="first">You’ll need <a class="reference external" href="https://github.com/onnx/onnx-caffe2">onnx-caffe2</a>, a
pure-Python library which provides a Caffe2 backend for ONNX. You can install <code class="docutils literal"><span class="pre">onnx-caffe2</span></code>
with pip:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">pip</span> <span class="n">install</span> <span class="n">onnx</span><span class="o">-</span><span class="n">caffe2</span>
</pre></div>
</div>
</li>
</ol>
<p>Once these are installed, you can use the backend for Caffe2:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="c1"># ...continuing from above</span>
<span class="kn">import</span> <span class="nn">onnx_caffe2.backend</span> <span class="k">as</span> <span class="nn">backend</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="n">rep</span> <span class="o">=</span> <span class="n">backend</span><span class="o">.</span><span class="n">prepare</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s2">"CUDA:0"</span><span class="p">)</span> <span class="c1"># or "CPU"</span>
<span class="c1"># For the Caffe2 backend:</span>
<span class="c1"># rep.predict_net is the Caffe2 protobuf for the network</span>
<span class="c1"># rep.workspace is the Caffe2 workspace for the network</span>
<span class="c1"># (see the class onnx_caffe2.backend.Workspace)</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">rep</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">))</span>
<span class="c1"># To run networks with more than one input, pass a tuple</span>
<span class="c1"># rather than a single numpy ndarray.</span>
<span class="nb">print</span><span class="p">(</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
</pre></div>
</div>
<p>In the future, there will be backends for other frameworks as well.</p>
</div>
<div class="section" id="limitations">
<h2>Limitations<a class="headerlink" href="#limitations" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li>The ONNX exporter is a <em>trace-based</em> exporter, which means that it
operates by executing your model once, and exporting the operators which
were actually run during this run. This means that if your model is
dynamic, e.g., changes behavior depending on input data, the export
won’t be accurate. Similarly, a trace is likely to be valid only
for a specific input size (which is one reason why we require explicit inputs
on tracing.) We recommend examining the model trace and making sure
the traced operators look reasonable.</li>
<li>PyTorch and Caffe2 often have implementations of operators with some
numeric differences. Depending on model structure, these differences
may be negligible, but they can also cause major divergences in behavior
(especially on untrained models.) In a future release, we plan to
allow Caffe2 to call directly to Torch implementations of operators, to
help you smooth over these differences when precision is important,
and to also document these differences.</li>
</ul>
</div>
<div class="section" id="supported-operators">
<h2>Supported operators<a class="headerlink" href="#supported-operators" title="Permalink to this headline">¶</a></h2>
<p>The following operators are supported:</p>
<ul class="simple">
<li>add (nonzero alpha not supported)</li>
<li>sub (nonzero alpha not supported)</li>
<li>mul</li>
<li>div</li>
<li>cat</li>
<li>mm</li>
<li>addmm</li>
<li>neg</li>
<li>tanh</li>
<li>sigmoid</li>
<li>mean</li>
<li>t</li>
<li>expand (only when used before a broadcasting ONNX operator; e.g., add)</li>
<li>transpose</li>
<li>view</li>
<li>split</li>
<li>squeeze</li>
<li>prelu (single weight shared among input channels not supported)</li>
<li>threshold (non-zero threshold/non-zero value not supported)</li>
<li>leaky_relu</li>
<li>glu</li>
<li>softmax</li>
<li>avg_pool2d (ceil_mode not supported)</li>
<li>log_softmax</li>
<li>unfold (experimental support with ATen-Caffe2 integration)</li>
<li>elu</li>
<li>Conv</li>
<li>BatchNorm</li>
<li>MaxPool1d (ceil_mode not supported)</li>
<li>MaxPool2d (ceil_mode not supported)</li>
<li>MaxPool3d (ceil_mode not supported)</li>
<li>Embedding (no optional arguments supported)</li>
<li>RNN</li>
<li>ConstantPadNd</li>
<li>Dropout</li>
<li>FeatureDropout (training mode not supported)</li>
<li>Index (constant integer and tuple indices supported)</li>
<li>Negate</li>
</ul>
<p>The operator set above is sufficient to export the following models:</p>
<ul class="simple">
<li>AlexNet</li>
<li>DCGAN</li>
<li>DenseNet</li>
<li>Inception (warning: this model is highly sensitive to changes in operator
implementation)</li>
<li>ResNet</li>
<li>SuperResolution</li>
<li>VGG</li>
<li><a class="reference external" href="https://github.com/pytorch/examples/tree/master/word_language_model">word_language_model</a></li>
</ul>
<p>The interface for specifying operator definitions is highly experimental
and undocumented; adventurous users should note that the APIs will probably
change in a future interface.</p>
</div>
<div class="section" id="functions">
<h2>Functions<a class="headerlink" href="#functions" title="Permalink to this headline">¶</a></h2>
<dl class="function">
<dt id="torch.onnx.export">
<code class="descclassname">torch.onnx.</code><code class="descname">export</code><span class="sig-paren">(</span><em>model</em>, <em>args</em>, <em>f</em>, <em>export_params=True</em>, <em>verbose=False</em>, <em>training=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/onnx.html#export"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.onnx.export" title="Permalink to this definition">¶</a></dt>
<dd><p>Export a model into ONNX format. This exporter runs your model
once in order to get a trace of its execution to be exported; at the
moment, it does not support dynamic models (e.g., RNNs.)</p>
<p>See also: <span class="xref std std-ref">onnx-export</span></p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>model</strong> (<a class="reference internal" href="nn.html#torch.nn.Module" title="torch.nn.Module"><em>torch.nn.Module</em></a>) – the model to be exported.</li>
<li><strong>args</strong> (<em>tuple of arguments</em>) – the inputs to
the model, e.g., such that <code class="docutils literal"><span class="pre">model(*args)</span></code> is a valid
invocation of the model. Any non-Variable arguments will
be hard-coded into the exported model; any Variable arguments
will become inputs of the exported model, in the order they
occur in args. If args is a Variable, this is equivalent
to having called it with a 1-ary tuple of that Variable.
(Note: passing keyword arguments to the model is not currently
supported. Give us a shout if you need it.)</li>
<li><strong>f</strong> – a file-like object (has to implement fileno that returns a file descriptor)
or a string containing a file name. A binary Protobuf will be written
to this file.</li>
<li><strong>export_params</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#bool" title="(in Python v2.7)"><em>bool</em></a><em>, </em><em>default True</em>) – if specified, all parameters will
be exported. Set this to False if you want to export an untrained model.
In this case, the exported model will first take all of its parameters
as arguments, the ordering as specified by <code class="docutils literal"><span class="pre">model.state_dict().values()</span></code></li>
<li><strong>verbose</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#bool" title="(in Python v2.7)"><em>bool</em></a><em>, </em><em>default False</em>) – if specified, we will print out a debug
description of the trace being exported.</li>
<li><strong>training</strong> (<a class="reference external" href="https://docs.python.org/2/library/functions.html#bool" title="(in Python v2.7)"><em>bool</em></a><em>, </em><em>default False</em>) – export the model in training mode. At
the moment, ONNX is oriented towards exporting models for inference
only, so you will generally not need to set this to True.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="model_zoo.html" class="btn btn-neutral" title="torch.utils.model_zoo" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2017, Torch Contributors.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'master',
LANGUAGE:'None',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enableSticky();
});
</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-90545585-1', 'auto');
ga('send', 'pageview');
</script>
</body>
</html>