forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.html
797 lines (622 loc) · 42.1 KB
/
data.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torch.utils.data — PyTorch master documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/data.html"/>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="_static/katex-math.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="torch.utils.dlpack" href="dlpack.html" />
<link rel="prev" title="torch.utils.cpp_extension" href="cpp_extension.html" />
<script src="_static/js/modernizr.min.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/features">Features</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active">
<a href="https://pytorch.org/docs/stable/index.html">Docs</a>
</li>
<li>
<a href="https://pytorch.org/resources">Resources</a>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='http://pytorch.org/docs/versions.html'>1.0.1 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/windows.html">Windows FAQ</a></li>
</ul>
<p class="caption"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/governance.html">PyTorch Governance</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/persons_of_interest.html">PyTorch Governance | Persons of Interest</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-functional">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html#torch-nn-init">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">torch.multiprocessing</a></li>
<li class="toctree-l1"><a class="reference internal" href="bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="ffi.html">torch.utils.ffi</a></li>
<li class="toctree-l1"><a class="reference internal" href="hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed_deprecated.html">torch.distributed.deprecated</a></li>
<li class="toctree-l1"><a class="reference internal" href="legacy.html">torch.legacy</a></li>
</ul>
<p class="caption"><span class="caption-text">torchvision Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="torchvision/index.html">torchvision</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="index.html">
Docs
</a> >
</li>
<li>torch.utils.data</li>
<li class="pytorch-breadcrumbs-aside">
<a href="_sources/data.rst.txt" rel="nofollow"><img src="_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="module-torch.utils.data">
<span id="torch-utils-data"></span><h1>torch.utils.data<a class="headerlink" href="#module-torch.utils.data" title="Permalink to this headline">¶</a></h1>
<dl class="class">
<dt id="torch.utils.data.Dataset">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">Dataset</code><a class="reference internal" href="_modules/torch/utils/data/dataset.html#Dataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.Dataset" title="Permalink to this definition">¶</a></dt>
<dd><p>An abstract class representing a Dataset.</p>
<p>All other datasets should subclass it. All subclasses should override
<code class="docutils literal"><span class="pre">__len__</span></code>, that provides the size of the dataset, and <code class="docutils literal"><span class="pre">__getitem__</span></code>,
supporting integer indexing in range from 0 to len(self) exclusive.</p>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.TensorDataset">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">TensorDataset</code><span class="sig-paren">(</span><em>*tensors</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataset.html#TensorDataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.TensorDataset" title="Permalink to this definition">¶</a></dt>
<dd><p>Dataset wrapping tensors.</p>
<p>Each sample will be retrieved by indexing tensors along the first dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>*tensors</strong> (<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a>) – tensors that have the same size of the first dimension.</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.ConcatDataset">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">ConcatDataset</code><span class="sig-paren">(</span><em>datasets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataset.html#ConcatDataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.ConcatDataset" title="Permalink to this definition">¶</a></dt>
<dd><p>Dataset to concatenate multiple datasets.
Purpose: useful to assemble different existing datasets, possibly
large-scale datasets as the concatenation operation is done in an
on-the-fly manner.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>datasets</strong> (<em>sequence</em>) – List of datasets to be concatenated</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.Subset">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">Subset</code><span class="sig-paren">(</span><em>dataset</em>, <em>indices</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataset.html#Subset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.Subset" title="Permalink to this definition">¶</a></dt>
<dd><p>Subset of a dataset at specified indices.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dataset</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – The whole Dataset</li>
<li><strong>indices</strong> (<em>sequence</em>) – Indices in the whole set selected for subset</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.DataLoader">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">DataLoader</code><span class="sig-paren">(</span><em>dataset</em>, <em>batch_size=1</em>, <em>shuffle=False</em>, <em>sampler=None</em>, <em>batch_sampler=None</em>, <em>num_workers=0</em>, <em>collate_fn=<function default_collate></em>, <em>pin_memory=False</em>, <em>drop_last=False</em>, <em>timeout=0</em>, <em>worker_init_fn=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataloader.html#DataLoader"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.DataLoader" title="Permalink to this definition">¶</a></dt>
<dd><p>Data loader. Combines a dataset and a sampler, and provides
single- or multi-process iterators over the dataset.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dataset</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – dataset from which to load the data.</li>
<li><strong>batch_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.7)"><em>int</em></a><em>, </em><em>optional</em>) – how many samples per batch to load
(default: <code class="docutils literal"><span class="pre">1</span></code>).</li>
<li><strong>shuffle</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – set to <code class="docutils literal"><span class="pre">True</span></code> to have the data reshuffled
at every epoch (default: <code class="docutils literal"><span class="pre">False</span></code>).</li>
<li><strong>sampler</strong> (<a class="reference internal" href="#torch.utils.data.Sampler" title="torch.utils.data.Sampler"><em>Sampler</em></a><em>, </em><em>optional</em>) – defines the strategy to draw samples from
the dataset. If specified, <code class="docutils literal"><span class="pre">shuffle</span></code> must be False.</li>
<li><strong>batch_sampler</strong> (<a class="reference internal" href="#torch.utils.data.Sampler" title="torch.utils.data.Sampler"><em>Sampler</em></a><em>, </em><em>optional</em>) – like sampler, but returns a batch of
indices at a time. Mutually exclusive with <code class="xref py py-attr docutils literal"><span class="pre">batch_size</span></code>,
<code class="xref py py-attr docutils literal"><span class="pre">shuffle</span></code>, <code class="xref py py-attr docutils literal"><span class="pre">sampler</span></code>, and <code class="xref py py-attr docutils literal"><span class="pre">drop_last</span></code>.</li>
<li><strong>num_workers</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.7)"><em>int</em></a><em>, </em><em>optional</em>) – how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process.
(default: <code class="docutils literal"><span class="pre">0</span></code>)</li>
<li><strong>collate_fn</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#callable" title="(in Python v3.7)"><em>callable</em></a><em>, </em><em>optional</em>) – merges a list of samples to form a mini-batch.</li>
<li><strong>pin_memory</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – If <code class="docutils literal"><span class="pre">True</span></code>, the data loader will copy tensors
into CUDA pinned memory before returning them.</li>
<li><strong>drop_last</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a><em>, </em><em>optional</em>) – set to <code class="docutils literal"><span class="pre">True</span></code> to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If <code class="docutils literal"><span class="pre">False</span></code> and
the size of dataset is not divisible by the batch size, then the last batch
will be smaller. (default: <code class="docutils literal"><span class="pre">False</span></code>)</li>
<li><strong>timeout</strong> (<em>numeric</em><em>, </em><em>optional</em>) – if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: <code class="docutils literal"><span class="pre">0</span></code>)</li>
<li><strong>worker_init_fn</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#callable" title="(in Python v3.7)"><em>callable</em></a><em>, </em><em>optional</em>) – If not <code class="docutils literal"><span class="pre">None</span></code>, this will be called on each
worker subprocess with the worker id (an int in <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">num_workers</span> <span class="pre">-</span> <span class="pre">1]</span></code>) as
input, after seeding and before data loading. (default: <code class="docutils literal"><span class="pre">None</span></code>)</li>
</ul>
</td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">By default, each worker will have its PyTorch seed set to
<code class="docutils literal"><span class="pre">base_seed</span> <span class="pre">+</span> <span class="pre">worker_id</span></code>, where <code class="docutils literal"><span class="pre">base_seed</span></code> is a long generated
by main process using its RNG. However, seeds for other libraies
may be duplicated upon initializing workers (w.g., NumPy), causing
each worker to return identical random numbers. (See
<a class="reference internal" href="notes/faq.html#dataloader-workers-random-seed"><span class="std std-ref">My data loader workers return identical random numbers</span></a> section in FAQ.) You may
use <a class="reference internal" href="torch.html#torch.initial_seed" title="torch.initial_seed"><code class="xref py py-func docutils literal"><span class="pre">torch.initial_seed()</span></code></a> to access the PyTorch seed for
each worker in <code class="xref py py-attr docutils literal"><span class="pre">worker_init_fn</span></code>, and use it to set other
seeds before data loading.</p>
</div>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">If <code class="docutils literal"><span class="pre">spawn</span></code> start method is used, <code class="xref py py-attr docutils literal"><span class="pre">worker_init_fn</span></code> cannot be an
unpicklable object, e.g., a lambda function.</p>
</div>
</dd></dl>
<dl class="function">
<dt id="torch.utils.data.random_split">
<code class="descclassname">torch.utils.data.</code><code class="descname">random_split</code><span class="sig-paren">(</span><em>dataset</em>, <em>lengths</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/dataset.html#random_split"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.random_split" title="Permalink to this definition">¶</a></dt>
<dd><p>Randomly split a dataset into non-overlapping new datasets of given lengths.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dataset</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – Dataset to be split</li>
<li><strong>lengths</strong> (<em>sequence</em>) – lengths of splits to be produced</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.Sampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">Sampler</code><span class="sig-paren">(</span><em>data_source</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#Sampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.Sampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Base class for all Samplers.</p>
<p>Every Sampler subclass has to provide an __iter__ method, providing a way
to iterate over indices of dataset elements, and a __len__ method that
returns the length of the returned iterators.</p>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.SequentialSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">SequentialSampler</code><span class="sig-paren">(</span><em>data_source</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#SequentialSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.SequentialSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements sequentially, always in the same order.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data_source</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – dataset to sample from</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.RandomSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">RandomSampler</code><span class="sig-paren">(</span><em>data_source</em>, <em>replacement=False</em>, <em>num_samples=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#RandomSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.RandomSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements randomly. If without replacement, then sample from a shuffled dataset.
If with replacement, then user can specify <code class="docutils literal"><span class="pre">num_samples</span></code> to draw.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data_source</strong> (<a class="reference internal" href="#torch.utils.data.Dataset" title="torch.utils.data.Dataset"><em>Dataset</em></a>) – dataset to sample from</li>
<li><strong>num_samples</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.7)"><em>int</em></a>) – number of samples to draw, default=len(dataset)</li>
<li><strong>replacement</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a>) – samples are drawn with replacement if <code class="docutils literal"><span class="pre">True</span></code>, default=False</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.SubsetRandomSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">SubsetRandomSampler</code><span class="sig-paren">(</span><em>indices</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#SubsetRandomSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.SubsetRandomSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements randomly from a given list of indices, without replacement.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>indices</strong> (<em>sequence</em>) – a sequence of indices</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.WeightedRandomSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">WeightedRandomSampler</code><span class="sig-paren">(</span><em>weights</em>, <em>num_samples</em>, <em>replacement=True</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#WeightedRandomSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.WeightedRandomSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Samples elements from [0,..,len(weights)-1] with given probabilities (weights).</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>weights</strong> (<em>sequence</em>) – a sequence of weights, not necessary summing up to one</li>
<li><strong>num_samples</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.7)"><em>int</em></a>) – number of samples to draw</li>
<li><strong>replacement</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a>) – if <code class="docutils literal"><span class="pre">True</span></code>, samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a
sample index is drawn for a row, it cannot be drawn again for that row.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.BatchSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.</code><code class="descname">BatchSampler</code><span class="sig-paren">(</span><em>sampler</em>, <em>batch_size</em>, <em>drop_last</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/sampler.html#BatchSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.BatchSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Wraps another sampler to yield a mini-batch of indices.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>sampler</strong> (<a class="reference internal" href="#torch.utils.data.Sampler" title="torch.utils.data.Sampler"><em>Sampler</em></a>) – Base sampler.</li>
<li><strong>batch_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.7)"><em>int</em></a>) – Size of mini-batch.</li>
<li><strong>drop_last</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.7)"><em>bool</em></a>) – If <code class="docutils literal"><span class="pre">True</span></code>, the sampler will drop the last batch if
its size would be less than <code class="docutils literal"><span class="pre">batch_size</span></code></li>
</ul>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Example</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">BatchSampler</span><span class="p">(</span><span class="n">SequentialSampler</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">)),</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">drop_last</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
<span class="go">[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">BatchSampler</span><span class="p">(</span><span class="n">SequentialSampler</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">)),</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">drop_last</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="go">[[0, 1, 2], [3, 4, 5], [6, 7, 8]]</span>
</pre></div>
</div>
</dd></dl>
<dl class="class">
<dt id="torch.utils.data.distributed.DistributedSampler">
<em class="property">class </em><code class="descclassname">torch.utils.data.distributed.</code><code class="descname">DistributedSampler</code><span class="sig-paren">(</span><em>dataset</em>, <em>num_replicas=None</em>, <em>rank=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/utils/data/distributed.html#DistributedSampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torch.utils.data.distributed.DistributedSampler" title="Permalink to this definition">¶</a></dt>
<dd><p>Sampler that restricts data loading to a subset of the dataset.</p>
<p>It is especially useful in conjunction with
<a class="reference internal" href="nn.html#torch.nn.parallel.DistributedDataParallel" title="torch.nn.parallel.DistributedDataParallel"><code class="xref py py-class docutils literal"><span class="pre">torch.nn.parallel.DistributedDataParallel</span></code></a>. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Dataset is assumed to be of constant size.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dataset</strong> – Dataset used for sampling.</li>
<li><strong>num_replicas</strong> (<em>optional</em>) – Number of processes participating in
distributed training.</li>
<li><strong>rank</strong> (<em>optional</em>) – Rank of the current process within num_replicas.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="dlpack.html" class="btn btn-neutral float-right" title="torch.utils.dlpack" accesskey="n" rel="next">Next <img src="_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="cpp_extension.html" class="btn btn-neutral" title="torch.utils.cpp_extension" accesskey="p" rel="prev"><img src="_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2018, Torch Contributors.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">torch.utils.data</a></li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'master',
LANGUAGE:'None',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js"></script>
<script type="text/javascript" src="_static/katex_autorenderer.js"></script>
<script type="text/javascript" src="_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="_static/js/vendor/bootstrap.min.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://pytorch.org/resources">Resources</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/support">Support</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.slack.com" target="_blank">Slack</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md" target="_blank">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col follow-us-col">
<ul>
<li class="list-title">Follow Us</li>
<li>
<div id="mc_embed_signup">
<form
action="https://twitter.us14.list-manage.com/subscribe/post?u=75419c71fe0a935e53dfa4a3f&id=91d0dccd39"
method="post"
id="mc-embedded-subscribe-form"
name="mc-embedded-subscribe-form"
class="email-subscribe-form validate"
target="_blank"
novalidate>
<div id="mc_embed_signup_scroll" class="email-subscribe-form-fields-wrapper">
<div class="mc-field-group">
<label for="mce-EMAIL" style="display:none;">Email Address</label>
<input type="email" value="" name="EMAIL" class="required email" id="mce-EMAIL" placeholder="Email Address">
</div>
<div id="mce-responses" class="clear">
<div class="response" id="mce-error-response" style="display:none"></div>
<div class="response" id="mce-success-response" style="display:none"></div>
</div> <!-- real people should not fill this in and expect good things - do not remove this or risk form bot signups-->
<div style="position: absolute; left: -5000px;" aria-hidden="true"><input type="text" name="b_75419c71fe0a935e53dfa4a3f_91d0dccd39" tabindex="-1" value=""></div>
<div class="clear">
<input type="submit" value="" name="subscribe" id="mc-embedded-subscribe" class="button email-subscribe-button">
</div>
</div>
</form>
</div>
</li>
</ul>
<div class="footer-social-icons">
<a href="https://www.facebook.com/pytorch" target="_blank" class="facebook"></a>
<a href="https://twitter.com/pytorch" target="_blank" class="twitter"></a>
</div>
</div>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="#">Get Started</a>
</li>
<li>
<a href="#">Features</a>
</li>
<li>
<a href="#">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active">
<a href="https://pytorch.org/docs/stable/index.html">Docs</a>
</li>
<li>
<a href="https://pytorch.org/resources">Resources</a>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>