-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmine.py
executable file
·227 lines (173 loc) · 7.09 KB
/
mine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/bin/python2
import numpy as np
import matplotlib.image as MImage
import matplotlib.pyplot as plt
import scipy.stats as st
from PIL import Image, ImageFilter, ImageDraw
import sys
import os
# Flush STDOUT continuously
sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0)
orgFileName = "11_NP3_011_0.bmp"
size = (1024, 1024) # width and height of image in pixels
#size = (300, 300) # width and height of image in pixels
######### SOME AUX FUNCTIONS #########
def gkern(kernlen=21, nsig=3):
"""Returns a 2D Gaussian kernel array."""
interval = (2*nsig+1.)/(kernlen)
x = np.linspace(-nsig-interval/2., nsig+interval/2., kernlen+1)
kern1d = np.diff(st.norm.cdf(x))
kernel_raw = np.sqrt(np.outer(kern1d, kern1d))
kernel = kernel_raw/kernel_raw.sum()
return kernel
def saveImage(name, matrix = None, format = "BMP", image = None):
print " -> Saving Image " + name + " ...",
if image is not None:
pass
elif matrix is not None:
image = Image.fromarray(matrix)
else:
raise ValueError("matrix or image must be specified")
image.save("dst/" + name + "." + format.lower(), format)
print "DONE"
return image
#######################################
print "Loading and Converting Image ...",
orgImg = Image.open("src/" + orgFileName, mode = 'r').convert()
try:
orgImg = orgImg.convert().crop((0,0,size[0],size[1]))
except NameError:
size = orgImg.size
orgGreyscaleMatrix = MImage.pil_to_array(orgImg.convert('L'))
emptyGreyscaleMatrix = MImage.pil_to_array(Image.new('L', size, 0))
emptyColoredMatrix = MImage.pil_to_array(Image.new('RGB', size, (0,0,0)))
print "DONE"
# print "Compute the 2-dimensional FFT ...",
# #print "."
# m = np.fft.rfft2(orgGreyscaleMatrix)
# #print m.shape
# #print m
# #print np.amax(m)
# am = np.log(np.absolute(m)+1)
# mm = np.around(am/np.amax(am)*255, decimals=0).astype(np.uint8)
# print "DONE"
# #print orgGreyscaleMatrix
# #print orgGreyscaleMatrix[1, 1]
# #print mm
# #print mm[1, 1]
# saveImage("fft", mm)
print "Gaussian Filter ... ",
def applyGaussianFilter(imgMatrix, kernelSize = 7):
gaussianMatrix = MImage.pil_to_array(Image.new('L', imgMatrix.shape, 0))
matrix = gkern(kernelSize)
for i in range(size[1] - (kernelSize - 1)):
for j in range(size[0] - (kernelSize - 1)):
iS = i + (kernelSize - 1)/2
jS = j + (kernelSize - 1)/2
#print t[i:(i + kernelSize), j:(j + kernelSize)]
gaussianMatrix[iS, jS] = np.sum(np.multiply(imgMatrix[i:(i + kernelSize), j:(j + kernelSize)], matrix))
#s[iS, jS] = np.sum(t[i:(i + kernelSize), j:(j + kernelSize)],)/kernelSize**2
return gaussianMatrix
gaussianMatrix = applyGaussianFilter(orgGreyscaleMatrix)
print "DONE"
# SAVING GAUSSIAN
saveImage("gaussian", gaussianMatrix)
print "Kernel Max Filter and Create Concordance ...",
maxMatrix = emptyGreyscaleMatrix * 0
concordanceMatrix = emptyGreyscaleMatrix * 0
kernelSize = 9
for i in range(size[1] - (kernelSize - 1)):
for j in range(size[0] - (kernelSize - 1)):
iS = i + (kernelSize - 1)/2
jS = j + (kernelSize - 1)/2
#print t[i:(i + kernelSize), j:(j + kernelSize)]
maxMatrix[iS, jS] = np.amax(gaussianMatrix[i:(i + kernelSize), j:(j + kernelSize)])
if maxMatrix[iS, jS] == gaussianMatrix[iS, jS]:
concordanceMatrix[iS, jS] = 1
#print iS, jS;
#exit();
print "DONE"
saveImage("max", maxMatrix)
concordanceImg = saveImage("concordance", concordanceMatrix*255)
print "Color Concordance Image ... ",
coloredConcordanceMatrix = emptyColoredMatrix * 0
for i in range(size[1]):
for j in range(size[0]):
if concordanceMatrix[i, j] == 1:
coloredConcordanceMatrix[i, j] = (255, 0, 0)
print "DONE"
coloredConcordanceImg = Image.fromarray(coloredConcordanceMatrix, 'RGB')
compositeImg = Image.composite(coloredConcordanceImg, orgImg.convert("RGB"), concordanceImg)
saveImage("composite", image = compositeImg)
#exit()
print "Finding Centers ...",
kernelSize = 35 # ODD
maxCenterSize = 2
movingSize = 20
centerMatrix = emptyGreyscaleMatrix * 0
compImgDraw = ImageDraw.Draw(compositeImg)
arcs = []
dir1 = 73
dir2 = 145
tolerance = 20
maxLength = 18
for i in range(0, size[1] - (kernelSize - 1), movingSize):
for j in range(0, size[0] - (kernelSize - 1), movingSize):
iS = i + (kernelSize - 1)/2
jS = j + (kernelSize - 1)/2
areaCenterDict = {}
resetList = []
#print "Window centered at " + str((iS, jS)) + " size: " + str((kernelSize, kernelSize)) + " borders: " + str((iS - (kernelSize - 1)/2, jS - (kernelSize - 1)/2, iS + (kernelSize - 1)/2, jS + (kernelSize - 1)/2)) +" :"
for ii in range(0, kernelSize):
for jj in range(0, kernelSize):
iiS = iS - (kernelSize - 1)/2 + ii
jjS = jS - (kernelSize - 1)/2 + jj
if concordanceMatrix[iiS , jjS] == 1:
concordanceMatrix[iiS, jjS] = 0
resetList.append((iiS, jjS))
centerInfo = { "pixels": []}
centerInfo["pixels"].append((iiS, jjS))
leftLimit = 0
if ii == 0:
leftLimit = -1
topLimit = 0
if jj == 0:
topLimit = -1
for ci in range(leftLimit*maxCenterSize, maxCenterSize + 1):
for cj in range(topLimit*maxCenterSize, maxCenterSize + 1):
if ci == 0 and cj == 0:
continue
if concordanceMatrix[iiS + ci, jjS + cj] == 1:
concordanceMatrix[iiS + ci, jjS + cj] = 0
resetList.append((iiS + ci, jjS + cj))
centerInfo["pixels"].append((iiS + ci, jjS + cj))
areaCenterDict[(iiS, jjS)] = centerInfo
for x, y in resetList:
#print "reseting " + str((x, y))
concordanceMatrix[x, y] = 1
#print len(areaCenterDict)
for center1 in areaCenterDict:
for center2 in areaCenterDict:
if center1 == center2:
continue
dist1 = center1[1] - center2[1]
dist2 = center1[0] - center2[0]
vLength = np.sqrt(dist1**2 + dist2**2)
# Maximum Distance To Connect
if vLength < maxLength:
arc = np.arccos(dist1/vLength)/(2*np.pi)*360
if dist2 > 0:
arc = 360 - arc
arcs.append(arc)
if abs(arc - dir1) < tolerance or abs(arc - dir2) < tolerance:
compImgDraw.line([center1[1], center1[0], center2[1], center2[0]], "green")
#centerMatrix[iS, jS] = 255
print "DONE"
#a, b = np.histogram(arcs, 100)
#for i, e in enumerate(a):
# print a[i], ":", b[i]
#plt.hist(arcs, 100)
#plt.show()
#saveImage("withLines", image = compositeImg)
compositeImg = Image.composite(coloredConcordanceImg, compositeImg, concordanceImg)
saveImage("withLines", image = compositeImg)