forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_consistency_to_diffusers.py
315 lines (265 loc) · 12.4 KB
/
convert_consistency_to_diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNet2DModel,
)
TEST_UNET_CONFIG = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": 1000,
"block_out_channels": [32, 64],
"attention_head_dim": 8,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"attn_norm_num_groups": 32,
"upsample_type": "resnet",
"downsample_type": "resnet",
}
IMAGENET_64_UNET_CONFIG = {
"sample_size": 64,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 3,
"num_class_embeds": 1000,
"block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"attn_norm_num_groups": 32,
"upsample_type": "resnet",
"downsample_type": "resnet",
}
LSUN_256_UNET_CONFIG = {
"sample_size": 256,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": None,
"block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "default",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
CD_SCHEDULER_CONFIG = {
"num_train_timesteps": 40,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
CT_IMAGENET_64_SCHEDULER_CONFIG = {
"num_train_timesteps": 201,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
CT_LSUN_256_SCHEDULER_CONFIG = {
"num_train_timesteps": 151,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")
def convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=False):
new_checkpoint[f"{new_prefix}.norm1.weight"] = checkpoint[f"{old_prefix}.in_layers.0.weight"]
new_checkpoint[f"{new_prefix}.norm1.bias"] = checkpoint[f"{old_prefix}.in_layers.0.bias"]
new_checkpoint[f"{new_prefix}.conv1.weight"] = checkpoint[f"{old_prefix}.in_layers.2.weight"]
new_checkpoint[f"{new_prefix}.conv1.bias"] = checkpoint[f"{old_prefix}.in_layers.2.bias"]
new_checkpoint[f"{new_prefix}.time_emb_proj.weight"] = checkpoint[f"{old_prefix}.emb_layers.1.weight"]
new_checkpoint[f"{new_prefix}.time_emb_proj.bias"] = checkpoint[f"{old_prefix}.emb_layers.1.bias"]
new_checkpoint[f"{new_prefix}.norm2.weight"] = checkpoint[f"{old_prefix}.out_layers.0.weight"]
new_checkpoint[f"{new_prefix}.norm2.bias"] = checkpoint[f"{old_prefix}.out_layers.0.bias"]
new_checkpoint[f"{new_prefix}.conv2.weight"] = checkpoint[f"{old_prefix}.out_layers.3.weight"]
new_checkpoint[f"{new_prefix}.conv2.bias"] = checkpoint[f"{old_prefix}.out_layers.3.bias"]
if has_skip:
new_checkpoint[f"{new_prefix}.conv_shortcut.weight"] = checkpoint[f"{old_prefix}.skip_connection.weight"]
new_checkpoint[f"{new_prefix}.conv_shortcut.bias"] = checkpoint[f"{old_prefix}.skip_connection.bias"]
return new_checkpoint
def convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_dim=None):
weight_q, weight_k, weight_v = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3, dim=0)
bias_q, bias_k, bias_v = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3, dim=0)
new_checkpoint[f"{new_prefix}.group_norm.weight"] = checkpoint[f"{old_prefix}.norm.weight"]
new_checkpoint[f"{new_prefix}.group_norm.bias"] = checkpoint[f"{old_prefix}.norm.bias"]
new_checkpoint[f"{new_prefix}.to_q.weight"] = weight_q.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_q.bias"] = bias_q.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_k.weight"] = weight_k.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_k.bias"] = bias_k.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_v.weight"] = weight_v.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_v.bias"] = bias_v.squeeze(-1).squeeze(-1)
new_checkpoint[f"{new_prefix}.to_out.0.weight"] = (
checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1).squeeze(-1)
)
new_checkpoint[f"{new_prefix}.to_out.0.bias"] = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1).squeeze(-1)
return new_checkpoint
def con_pt_to_diffuser(checkpoint_path: str, unet_config):
checkpoint = torch.load(checkpoint_path, map_location="cpu")
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["time_embed.2.bias"]
if unet_config["num_class_embeds"] is not None:
new_checkpoint["class_embedding.weight"] = checkpoint["label_emb.weight"]
new_checkpoint["conv_in.weight"] = checkpoint["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = checkpoint["input_blocks.0.0.bias"]
down_block_types = unet_config["down_block_types"]
layers_per_block = unet_config["layers_per_block"]
attention_head_dim = unet_config["attention_head_dim"]
channels_list = unet_config["block_out_channels"]
current_layer = 1
prev_channels = channels_list[0]
for i, layer_type in enumerate(down_block_types):
current_channels = channels_list[i]
downsample_block_has_skip = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(layers_per_block):
new_prefix = f"down_blocks.{i}.resnets.{j}"
old_prefix = f"input_blocks.{current_layer}.0"
has_skip = True if j == 0 and downsample_block_has_skip else False
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip)
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(layers_per_block):
new_prefix = f"down_blocks.{i}.resnets.{j}"
old_prefix = f"input_blocks.{current_layer}.0"
has_skip = True if j == 0 and downsample_block_has_skip else False
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=has_skip)
new_prefix = f"down_blocks.{i}.attentions.{j}"
old_prefix = f"input_blocks.{current_layer}.1"
new_checkpoint = convert_attention(
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim
)
current_layer += 1
if i != len(down_block_types) - 1:
new_prefix = f"down_blocks.{i}.downsamplers.0"
old_prefix = f"input_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
current_layer += 1
prev_channels = current_channels
# hardcoded the mid-block for now
new_prefix = "mid_block.resnets.0"
old_prefix = "middle_block.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
new_prefix = "mid_block.attentions.0"
old_prefix = "middle_block.1"
new_checkpoint = convert_attention(checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim)
new_prefix = "mid_block.resnets.1"
old_prefix = "middle_block.2"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
current_layer = 0
up_block_types = unet_config["up_block_types"]
for i, layer_type in enumerate(up_block_types):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1):
new_prefix = f"up_blocks.{i}.resnets.{j}"
old_prefix = f"output_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True)
current_layer += 1
if i != len(up_block_types) - 1:
new_prefix = f"up_blocks.{i}.upsamplers.0"
old_prefix = f"output_blocks.{current_layer-1}.1"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1):
new_prefix = f"up_blocks.{i}.resnets.{j}"
old_prefix = f"output_blocks.{current_layer}.0"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix, has_skip=True)
new_prefix = f"up_blocks.{i}.attentions.{j}"
old_prefix = f"output_blocks.{current_layer}.1"
new_checkpoint = convert_attention(
checkpoint, new_checkpoint, old_prefix, new_prefix, attention_head_dim
)
current_layer += 1
if i != len(up_block_types) - 1:
new_prefix = f"up_blocks.{i}.upsamplers.0"
old_prefix = f"output_blocks.{current_layer-1}.2"
new_checkpoint = convert_resnet(checkpoint, new_checkpoint, old_prefix, new_prefix)
new_checkpoint["conv_norm_out.weight"] = checkpoint["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = checkpoint["out.0.bias"]
new_checkpoint["conv_out.weight"] = checkpoint["out.2.weight"]
new_checkpoint["conv_out.bias"] = checkpoint["out.2.bias"]
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.")
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model."
)
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.")
args = parser.parse_args()
args.class_cond = str2bool(args.class_cond)
ckpt_name = os.path.basename(args.unet_path)
print(f"Checkpoint: {ckpt_name}")
# Get U-Net config
if "imagenet64" in ckpt_name:
unet_config = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
unet_config = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
unet_config = TEST_UNET_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
if not args.class_cond:
unet_config["num_class_embeds"] = None
converted_unet_ckpt = con_pt_to_diffuser(args.unet_path, unet_config)
image_unet = UNet2DModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
scheduler_config = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
scheduler_config = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
scheduler_config = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
cm_scheduler = CMStochasticIterativeScheduler(**scheduler_config)
consistency_model = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)