forked from yangsaiyong/tf-adaptive-softmax-lstm-lm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader.py
100 lines (83 loc) · 3.59 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import time
import numpy as np
def INFO_LOG(info):
print "[%s]%s" % (time.strftime("%Y-%m-%d %X", time.localtime()), info)
class Vocab(object):
def __init__(self):
self.BOS = "<s>"
self.EOS = "</s>"
self.UNK = "<unk>"
def buildFromFiles(self, files):
if type(files) is not list:
raise ValueError("buildFromFiles input type error")
INFO_LOG("build vocabulary from files ...")
self.word_cnt = {self.BOS: 0, self.EOS: 0}
for _file in files:
line_num = 0
for line in open(_file):
line_num += 1
for w in line.strip().replace('<UNK>', self.UNK).split():
if self.word_cnt.has_key(w):
self.word_cnt[w] += 1
else:
self.word_cnt[w] = 1
self.word_cnt[self.BOS] += line_num
self.word_cnt[self.EOS] += line_num
count_pairs = sorted(self.word_cnt.items(), key = lambda x: (-x[1], x[0]))
self.words, _ = list(zip(*count_pairs))
self.word2id = dict(zip(self.words, range(len(self.words))))
self.UNK_ID = self.word2id[self.UNK]
INFO_LOG("vocab size: {}".format(self.size()))
def encode(self, sentence):
return [self.word2id[w] if self.word2id.has_key(w) else self.UNK_ID for w in sentence]
def decode(self, ids):
return [self.words[_id] for _id in ids]
def size(self):
return len(self.words)
class Reader(object):
def __init__(self, data_path):
self.train_file = os.path.join(data_path, 'ptb.train.txt')
self.valid_file = os.path.join(data_path, 'ptb.valid.txt')
self.test_file = os.path.join(data_path, 'ptb.test.txt')
self.vocab = Vocab()
self.vocab.buildFromFiles([self.train_file])
def getVocabSize(self):
return self.vocab.size()
def yieldSpliceBatch(self, tag, batch_size, step_size):
eos_index = self.vocab.word2id[self.vocab.EOS]
unk_index = self.vocab.word2id[self.vocab.UNK]
if tag == 'Train':
_file = self.train_file
elif tag == 'Valid':
_file = self.valid_file
else:
_file = self.test_file
INFO_LOG("File: %s" % _file)
data = []
line_num = 0
for line in open(_file):
tokens = line.strip().split()
data += self.vocab.encode(tokens) + [eos_index]
line_num += 1
total_token = len(data)
token_num = (total_token - line_num)
data_len = len(data)
batch_len = data_len // batch_size
batch_num = (batch_len - 1) // step_size
if batch_num == 0:
raise ValueError("batch_num == 0, decrease batch_size or step_size")
INFO_LOG(" {} sentence, {}/{} tokens with/out {}".format(line_num, total_token, token_num, self.vocab.EOS))
used_token = batch_num * batch_size * step_size
INFO_LOG(" {} batches, {}*{}*{} = {}({:.2%}) tokens will be used".format(batch_num,
batch_num, batch_size, step_size, used_token, float(used_token) / total_token))
word_data = np.zeros([batch_size, batch_len], dtype=np.int32)
for j in range(batch_size):
index = j * batch_len
word_data[j] = data[index : index + batch_len]
for batch_id in range(batch_num):
index = step_size * batch_id
x = word_data[:, index : index + step_size]
y = word_data[:, index + 1 : index + step_size + 1]
n = batch_size * step_size
yield(batch_id, batch_num, x, y, n)