-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
358 lines (276 loc) · 13.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import numpy as np
import pandas as pd
import os
import copy
import pickle as pkl
import torch.nn.functional as F
import scipy.stats as st
import torch
import random
import argparse
from PIL import Image
from scipy.misc import imread
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', default='./images/raw_images')
parser.add_argument('--output_dir', default='./images/advimages/model_(1*2, 2, 3)_13_25_cosloss_gs2_3'
'_mi0.9')
parser.add_argument('--max_epsilon', help='Maximum size of adversarial perturbation.', default=11.0)
parser.add_argument('--image_size', default=112)
parser.add_argument('--image_resize', default=130)
parser.add_argument('--batch_size', default=8)
parser.add_argument('--prob', help='probability of using diverse inputs.', default=0.5)
parser.add_argument('--sig', help='gradient smoothing', default=3)
parser.add_argument('--kernlen', help='gradient smoothing kernel len', default=3)
parser.add_argument('--momentum', default=0.9)
parser.add_argument('--iterations', default=25)
parser.add_argument('--cos_margin', help='', default=0.8)
args = parser.parse_args()
def gkern(kernlen=21, nsig=3):
"""Returns a 2D Gaussian kernel array."""
interval = (2 * nsig + 1.) / (kernlen)
x = np.linspace(-nsig - interval / 2., nsig + interval / 2., kernlen + 1)
kern1d = np.diff(st.norm.cdf(x))
kernel_raw = np.sqrt(np.outer(kern1d, kern1d))
kernel = kernel_raw / kernel_raw.sum()
return kernel
def input_diversity(image, prob=args.prob, low=args.image_size, high=args.image_resize):
if random.random()<prob:
return image
rnd = random.randint(low, high)
rescaled = F.upsample(image, size=[rnd, rnd], mode='bilinear')
h_rem = high - rnd
w_rem = high - rnd
pad_top = random.randint(0, h_rem)
pad_bottom = h_rem - pad_top
pad_left = random.randint(0, w_rem)
pad_right = w_rem - pad_left
padded = F.pad(rescaled, [pad_top, pad_bottom, pad_left, pad_right], 'constant', 0)
padded = F.upsample(padded, size=[low, low], mode='bilinear')
return padded
def load_images_with_names(input_dir, batch_size):
images = []
filenames = []
personnames = []
idx = 0
dev = pd.read_csv(os.path.join(input_dir, 'dev.csv'))
filename2personname = {dev.iloc[i]['ImageName']: dev.iloc[i]['PersonName'] for i in range(len(dev))}
for filename in filename2personname.keys():
image = (imread(os.path.join(input_dir, filename))).astype(np.float32)
images.append(image)
filenames.append(filename)
personnames.append(filename2personname[filename])
idx += 1
if idx == batch_size:
images = np.array(images)
yield images, filenames, personnames
images = []
filenames = []
personnames = []
idx = 0
if idx > 0:
images = np.array(images)
yield images, filenames, personnames
def process(img):
img = img.swapaxes(2, 3).swapaxes(1, 2)
img = (img - 127.5) / 128.0
img = np.array(img, dtype=np.float32)
img = torch.from_numpy(img)
return img
def save_images(r_images, images, filenames, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
total_distance_ = 0
for i, filename in enumerate(filenames):
image = (images[i] * 128.0 + 127.5)
image = np.around(image).clip(0, 255).astype(np.uint8)
Image.fromarray(image).save(os.path.join(output_dir, filename))
distance = calc_dist(r_images[i], image)
print("distance:", distance)
total_distance_ += distance
print('current mean distance: ', total_distance_ / len(filenames))
return total_distance_
def calc_dist(r_img, adv_img):
adv_image_arr = np.array(r_img).astype(np.int32)
raw_image_arr = np.array(adv_img).astype(np.int32)
diff = adv_image_arr.reshape((-1, 3)) - raw_image_arr.reshape((-1, 3))
distance = np.mean(np.sqrt(np.sum((diff ** 2), axis=1)))
return distance
class Classifier(object):
def __init__(self):
with open('./embeds_pkl/all_by_ir50.pkl', 'rb+') as f:
self.label2classname, aver_embeds_ = pkl.load(f)
f.close()
self.aver_embeds_ = aver_embeds_[:, 1:]
self.idx2label = aver_embeds_[:, 0]
def classifier(self, image_embed_):
image_embed = image_embed_ / np.linalg.norm(image_embed_, axis=1, keepdims=True) # (bt, 512)
aver_embeds = self.aver_embeds_ / np.linalg.norm(self.aver_embeds_, axis=1, keepdims=True) # (1w+, 512)
cos_distances = image_embed.dot(aver_embeds.T) # (89, 512).(512, 1w+) = (bt, 1w+)
idx = np.argmax(cos_distances, axis=1) # (89,)
label = self.idx2label[idx]
return label
class Mask(object):
def __init__(self):
pkl_path1 = './embeds_pkl/all_by_ir50.pkl'
pkl_path2 = './embeds_pkl/all_by_ir152.pkl'
pkl_path3 = './embeds_pkl/all_by_irse50.pkl'
with open(pkl_path1, 'rb+') as f:
self.label2classname, all_embeds_1 = pkl.load(f)
f.close()
with open(pkl_path2, 'rb+') as f:
_, all_embeds_2 = pkl.load(f)
f.close()
with open(pkl_path3, 'rb+') as f:
_, all_embeds_3 = pkl.load(f)
f.close()
self.idx2label = all_embeds_1[:, 0] # 1w+,
self.all_embeds_1 = all_embeds_1[:, 1:].astype(np.float32) # 1w+, 512
self.all_embeds_2 = all_embeds_2[:, 1:].astype(np.float32)
self.all_embeds_3 = all_embeds_3[:, 1:].astype(np.float32)
def get_perturb_mask(self, image_embed_1, image_embed_2, image_embed_3, true_idx, margin):
image_embed_1 = image_embed_1 / np.linalg.norm(image_embed_1, axis=1, keepdims=True)
image_embed_2 = image_embed_2 / np.linalg.norm(image_embed_2, axis=1, keepdims=True)
image_embed_3 = image_embed_3 / np.linalg.norm(image_embed_3, axis=1, keepdims=True)
all_embeds1 = self.all_embeds_1 / np.linalg.norm(self.all_embeds_1, axis=1, keepdims=True)
all_embeds2 = self.all_embeds_2 / np.linalg.norm(self.all_embeds_2, axis=1, keepdims=True)
all_embeds3 = self.all_embeds_3 / np.linalg.norm(self.all_embeds_3, axis=1, keepdims=True)
cos_distances1 = image_embed_1.dot(all_embeds1.T) # (batch, 512).(512, 1w+) = (batch, 1w+)
cos_distances2 = image_embed_2.dot(all_embeds2.T)
cos_distances3 = image_embed_3.dot(all_embeds3.T)
cos_distances = (cos_distances1 + cos_distances2 * 0.35 + cos_distances3 * 0.65) / 2.0
max_idx = np.argmax(cos_distances, axis=1) # (89,)
max_cos_dist = np.max(cos_distances, axis=1) # (89,)
max_true_dists = []
for i in range(0, true_idx.shape[0]):
bool_cond = np.equal(self.idx2label, true_idx[i])
index = np.where(bool_cond)
max_true_dist = np.max(cos_distances[i][index])
max_true_dists.append(max_true_dist)
distance_mask = np.greater(max_cos_dist, np.add(max_true_dists, margin))
zero_mask = np.zeros(true_idx.shape[0])
one_mask = np.ones(true_idx.shape[0])
peturb_mask = np.where(np.equal(distance_mask, True), zero_mask, one_mask)
return peturb_mask
def found_bias_v1(image_embed_1, image_embed_2, image_embed_3, batch_size):
pkl_path1 = './embeds_pkl/712_by_ir50.pkl'
pkl_path2 = './embeds_pkl/712_by_ir152.pkl'
pkl_path3 = './embeds_pkl/712_by_irse50.pkl'
with open(pkl_path1, 'rb+') as f:
_, all_embeds_1 = pkl.load(f)
f.close()
with open(pkl_path2, 'rb+') as f:
_, all_embeds_2 = pkl.load(f)
f.close()
with open(pkl_path3, 'rb+') as f:
_, all_embeds_3 = pkl.load(f)
f.close()
idx2label = all_embeds_1[:, 0]
all_embeds_1 = all_embeds_1[:, 1:].astype(np.float32)
all_embeds_2 = all_embeds_2[:, 1:].astype(np.float32)
all_embeds_3 = all_embeds_3[:, 1:].astype(np.float32)
image_embed_1 = image_embed_1 / np.linalg.norm(image_embed_1, axis=1, keepdims=True)
image_embed_2 = image_embed_2 / np.linalg.norm(image_embed_2, axis=1, keepdims=True)
image_embed_3 = image_embed_3 / np.linalg.norm(image_embed_3, axis=1, keepdims=True)
all_embeds1 = all_embeds_1 / np.linalg.norm(all_embeds_1, axis=1, keepdims=True)
all_embeds2 = all_embeds_2 / np.linalg.norm(all_embeds_2, axis=1, keepdims=True)
all_embeds3 = all_embeds_3 / np.linalg.norm(all_embeds_3, axis=1, keepdims=True)
cos_distances1 = image_embed_1.dot(all_embeds1.T) # (batch, 512).(512, 712) = (batch, 712)
cos_distances2 = image_embed_2.dot(all_embeds2.T)
cos_distances3 = image_embed_3.dot(all_embeds3.T)
cos_distances = (cos_distances1 + cos_distances2 * 0.35 + cos_distances3 * 0.65) / 2.0
idx = np.argmax(cos_distances, axis=1) # (batch,)
label = idx2label[idx]
second_idxes = []
for i in range(0, batch_size):
cos_distances_ = copy.deepcopy(cos_distances)
cos_distances_[i][idx[i]] = np.min(cos_distances_[i])
second_idx = np.argmax(cos_distances_[i])
second_idxes.append(second_idx)
second_embed1 = all_embeds_1[second_idxes]
second_embed2 = all_embeds_2[second_idxes]
second_embed3 = all_embeds_3[second_idxes]
return second_embed1, second_embed2, second_embed3
def found_bias_v2(image_embed_1, image_embed_2, image_embed_3, batch_size):
pkl_path1 = './embeds_pkl/all712_by_ir50.pkl'
pkl_path2 = './embeds_pkl/all712_by_ir152.pkl'
pkl_path3 = './embeds_pkl/all712_by_irse50.pkl'
with open(pkl_path1, 'rb+') as f:
_, all_embeds_1 = pkl.load(f)
f.close()
with open(pkl_path2, 'rb+') as f:
_, all_embeds_2 = pkl.load(f)
f.close()
with open(pkl_path3, 'rb+') as f:
_, all_embeds_3 = pkl.load(f)
f.close()
idx2label = all_embeds_1[:, 0]
all_embeds_1 = all_embeds_1[:, 1:].astype(np.float32)
all_embeds_2 = all_embeds_2[:, 1:].astype(np.float32)
all_embeds_3 = all_embeds_3[:, 1:].astype(np.float32)
image_embed_1 = image_embed_1 / np.linalg.norm(image_embed_1, axis=1, keepdims=True)
image_embed_2 = image_embed_2 / np.linalg.norm(image_embed_2, axis=1, keepdims=True)
image_embed_3 = image_embed_3 / np.linalg.norm(image_embed_3, axis=1, keepdims=True)
all_embeds1 = all_embeds_1 / np.linalg.norm(all_embeds_1, axis=1, keepdims=True)
all_embeds2 = all_embeds_2 / np.linalg.norm(all_embeds_2, axis=1, keepdims=True)
all_embeds3 = all_embeds_3 / np.linalg.norm(all_embeds_3, axis=1, keepdims=True)
cos_distances1 = image_embed_1.dot(all_embeds1.T) # (batch, 512).(512, 5K+) = (batch, 5k+)
cos_distances2 = image_embed_2.dot(all_embeds2.T)
cos_distances3 = image_embed_3.dot(all_embeds3.T)
# print('cos_dist shape:', cos_distances.shape)
cos_distances = (cos_distances1 + cos_distances2 * 0.35 + cos_distances3 * 0.65) / 2.0
idx = np.argmax(cos_distances, axis=1) # (batch,)
labels = idx2label[idx]
second_idxes = []
for i in range(0, batch_size):
bool_cond = np.equal(idx2label, labels[i])
true_index = np.where(bool_cond)
cos_distances_ = copy.deepcopy(cos_distances)
cos_distances_[i][true_index] = np.min(cos_distances_[i])
second_idx = np.argmax(cos_distances_[i])
second_idxes.append(second_idx)
# print(second_idxes)
second_embed1 = all_embeds_1[second_idxes]
second_embed2 = all_embeds_2[second_idxes]
second_embed3 = all_embeds_3[second_idxes]
return second_embed1, second_embed2, second_embed3
def found_bias_v3(image_embed_1, image_embed_2, image_embed_3, batch_size, true_labels):
pkl_path1 = './embeds_pkl/all_by_ir50.pkl'
pkl_path2 = './embeds_pkl/all_by_ir152.pkl'
pkl_path3 = './embeds_pkl/all_by_irse50.pkl'
with open(pkl_path1, 'rb+') as f:
_, all_embeds_1 = pkl.load(f)
f.close()
with open(pkl_path2, 'rb+') as f:
_, all_embeds_2 = pkl.load(f)
f.close()
with open(pkl_path3, 'rb+') as f:
_, all_embeds_3 = pkl.load(f)
f.close()
idx2label = all_embeds_1[:, 0]
all_embeds_1 = all_embeds_1[:, 1:].astype(np.float32)
all_embeds_2 = all_embeds_2[:, 1:].astype(np.float32)
all_embeds_3 = all_embeds_3[:, 1:].astype(np.float32)
image_embed_1 = image_embed_1 / np.linalg.norm(image_embed_1, axis=1, keepdims=True)
image_embed_2 = image_embed_2 / np.linalg.norm(image_embed_2, axis=1, keepdims=True)
image_embed_3 = image_embed_3 / np.linalg.norm(image_embed_3, axis=1, keepdims=True)
all_embeds1 = all_embeds_1 / np.linalg.norm(all_embeds_1, axis=1, keepdims=True)
all_embeds2 = all_embeds_2 / np.linalg.norm(all_embeds_2, axis=1, keepdims=True)
all_embeds3 = all_embeds_3 / np.linalg.norm(all_embeds_3, axis=1, keepdims=True)
cos_distances1 = image_embed_1.dot(all_embeds1.T) # (batch, 512).(512, 5K+) = (batch, 5k+)
cos_distances2 = image_embed_2.dot(all_embeds2.T)
cos_distances3 = image_embed_3.dot(all_embeds3.T)
cos_distances = (cos_distances1 + cos_distances2 * 0.35 + cos_distances3 * 0.65) / 2.0
idx = np.argmax(cos_distances, axis=1) # (batch,)
labels = idx2label[idx]
second_idxes = []
for i in range(0, batch_size):
bool_cond = np.equal(idx2label, true_labels[i])
true_index = np.where(bool_cond)
cos_distances_ = copy.deepcopy(cos_distances)
cos_distances_[i][true_index] = np.min(cos_distances_[i])
second_idx = np.argmax(cos_distances_[i])
second_idxes.append(second_idx)
second_embed1 = all_embeds_1[second_idxes]
second_embed2 = all_embeds_2[second_idxes]
second_embed3 = all_embeds_3[second_idxes]
return second_embed1, second_embed2, second_embed3