-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiRNNCell-mnist-.py
110 lines (85 loc) · 3.71 KB
/
MultiRNNCell-mnist-.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# coding: utf-8
# ### 一. 单个rnn +mnist
# #### 1.1 RNN 来进行分类的训练 (Classification).
# 1. 会继续使用到手写数字 MNIST 数据集.
# 2. RNN 从每张图片的第一行像素读到最后一行, 然后再进行分类判断.
# 3. 接下来我们导入 MNIST 数据并确定 RNN 的各种参数(hyper-parameters)
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(1) # set random seed
# 导入数据
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# hyperparameters
lr = 0.001 # learning rate
training_iters = 10000 # train step 上限
batch_size = 100
n_inputs = 28*4 # MNIST data input (img shape: 28*28)
n_steps =7 # time steps
n_hidden_units = 100 # neurons in hidden layer
n_classes = 10 # MNIST classes (0-9 digits)
# 1. 由于batch_size=128,所以x的形状是128x28x28.进去之后改变形状为:3584x28
# 2. 所以$x*$weights['in']$*$weights['out']的过程是:3584x28***28x128 *** 128x10 ====3584x10
# 3. 就是y的形状
# x y placeholder
#x.shape: -1x28x28
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
#y.shape :-1x10
y = tf.placeholder(tf.float32, [None, n_classes])
# 对 weights biases 初始值的定义
weights = {
# shape (28, 128)
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
# shape (128, 10)
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
# shape (128, )
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
# shape (10, )
'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}
def RNN(X, weights, biases):
# 原始的 X 是 3 维数据, 我们需要把它变成 2 维数据才能使用 weights 的矩阵乘法
# X ==> (128 batches * 28 steps, 28 inputs)
X = tf.reshape(X, [-1, n_inputs])
# X_in = W*X + b===3584*128
X_in = tf.matmul(X, weights['in']) + biases['in']
# X_in ==> (128 batches, 28 steps, 128 hidden) 换回3维
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
# 使用 basic LSTM Cell.
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
lstm_cell = tf.nn.rnn_cell.MultiRNNCell(cells=[lstm_cell]*3, state_is_tuple = True)
init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) # 初始化全零 state
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=False)
#print(outputs)#128,28,100
#[batch_size, cell.state_size]
results = tf.matmul(final_state[-1][1], weights['out']) + biases['out']
return results
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
step = 0
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
sess.run([train_op], feed_dict={
x: batch_xs,
y: batch_ys,
})
if step % 100 == 0:
print(step,sess.run(accuracy, feed_dict={
x: batch_xs,
y: batch_ys,
}))
step += 1
print('done')
# ### 5. 结果验证,时间序列??必须相同维度
test_len = batch_size
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_inputs))
test_label = mnist.test.labels[:test_len]
print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))