|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from torch.utils.data import Dataset, DataLoader\n", |
| 10 | + "import pandas as pd" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 21, |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [], |
| 18 | + "source": [ |
| 19 | + "class file(Dataset):\n", |
| 20 | + " def __init__(self,files):\n", |
| 21 | + " super(file,self).__init__()\n", |
| 22 | + " with open(files) as f: \n", |
| 23 | + " self.file=f.readlines()\n", |
| 24 | + " def __len__(self):\n", |
| 25 | + " return len(self.file)\n", |
| 26 | + " def __getitem__(self,idx):\n", |
| 27 | + " return self.file[idx]" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 22, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "f=file('backward.py')" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 23, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [ |
| 44 | + { |
| 45 | + "data": { |
| 46 | + "text/plain": [ |
| 47 | + "['# -*- coding: utf-8 -*-\\n',\n", |
| 48 | + " '\"\"\"\\n',\n", |
| 49 | + " 'Created on Sun Apr 29 16:23:43 2018\\n',\n", |
| 50 | + " '\\n',\n", |
| 51 | + " '@author: omf\\n',\n", |
| 52 | + " '\"\"\"\\n',\n", |
| 53 | + " 'import torch as t\\n',\n", |
| 54 | + " 'from torch.autograd import Variable as v\\n',\n", |
| 55 | + " '# compute jacobian matrix\\n',\n", |
| 56 | + " 'x = t.FloatTensor([2, 1]).view(1, 2)\\n',\n", |
| 57 | + " 'x = v(x, requires_grad=True)\\n',\n", |
| 58 | + " 'y = v(t.FloatTensor([[1, 2], [3, 4]]))t\\n',\n", |
| 59 | + " '\\n',\n", |
| 60 | + " 'z = t.mm(x, y)\\n',\n", |
| 61 | + " 'jacobian = t.zeros((2, 2))\\n',\n", |
| 62 | + " 'z.backward(t.FloatTensor([[1, 0]]), retain_graph=True) # dz1/dx1, dz1/dx2\\n',\n", |
| 63 | + " 'jacobian[:, 0] = x.grad.data\\n',\n", |
| 64 | + " 'x.grad.data.zero_()\\n',\n", |
| 65 | + " 'z.backward(t.FloatTensor([[0, 1]])) # dz2/dx1, dz2/dx2\\n',\n", |
| 66 | + " 'jacobian[:, 1] = x.grad.data\\n',\n", |
| 67 | + " \"print('=========jacobian========')\\n\",\n", |
| 68 | + " \"print('x')\\n\",\n", |
| 69 | + " 'print(x.data)\\n',\n", |
| 70 | + " \"print('y')\\n\",\n", |
| 71 | + " 'print(y.data)\\n',\n", |
| 72 | + " \"print('compute result')\\n\",\n", |
| 73 | + " 'print(z.data)\\n',\n", |
| 74 | + " \"print('jacobian matrix is')\\n\",\n", |
| 75 | + " 'print(jacobian)']" |
| 76 | + ] |
| 77 | + }, |
| 78 | + "execution_count": 23, |
| 79 | + "metadata": {}, |
| 80 | + "output_type": "execute_result" |
| 81 | + } |
| 82 | + ], |
| 83 | + "source": [ |
| 84 | + "f.file" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": 30, |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [ |
| 92 | + { |
| 93 | + "data": { |
| 94 | + "text/plain": [ |
| 95 | + "'from torch.autograd import Variable as v\\n'" |
| 96 | + ] |
| 97 | + }, |
| 98 | + "execution_count": 30, |
| 99 | + "metadata": {}, |
| 100 | + "output_type": "execute_result" |
| 101 | + } |
| 102 | + ], |
| 103 | + "source": [ |
| 104 | + "f[7]" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 31, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "dataloader = DataLoader(f, batch_size=4)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": 36, |
| 119 | + "metadata": {}, |
| 120 | + "outputs": [ |
| 121 | + { |
| 122 | + "name": "stdout", |
| 123 | + "output_type": "stream", |
| 124 | + "text": [ |
| 125 | + "4\n", |
| 126 | + "4\n", |
| 127 | + "4\n", |
| 128 | + "4\n", |
| 129 | + "4\n", |
| 130 | + "4\n", |
| 131 | + "4\n", |
| 132 | + "1\n" |
| 133 | + ] |
| 134 | + } |
| 135 | + ], |
| 136 | + "source": [ |
| 137 | + "for i,j in enumerate(dataloader):\n", |
| 138 | + " print(len(j))" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [] |
| 154 | + } |
| 155 | + ], |
| 156 | + "metadata": { |
| 157 | + "kernelspec": { |
| 158 | + "display_name": "Python 3", |
| 159 | + "language": "python", |
| 160 | + "name": "python3" |
| 161 | + }, |
| 162 | + "language_info": { |
| 163 | + "codemirror_mode": { |
| 164 | + "name": "ipython", |
| 165 | + "version": 3 |
| 166 | + }, |
| 167 | + "file_extension": ".py", |
| 168 | + "mimetype": "text/x-python", |
| 169 | + "name": "python", |
| 170 | + "nbconvert_exporter": "python", |
| 171 | + "pygments_lexer": "ipython3", |
| 172 | + "version": "3.6.4" |
| 173 | + } |
| 174 | + }, |
| 175 | + "nbformat": 4, |
| 176 | + "nbformat_minor": 2 |
| 177 | +} |
0 commit comments