Skip to content

Commit 9d8280a

Browse files
committed
science python
1 parent 6e6f218 commit 9d8280a

5 files changed

+7929
-0
lines changed

science/jupyter-notebook-base.ipynb

+253
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,253 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 20,
6+
"metadata": {
7+
"collapsed": true
8+
},
9+
"outputs": [],
10+
"source": [
11+
"import pandas as pd\n",
12+
"import numpy as np\n",
13+
"import os\n",
14+
"import datetime"
15+
]
16+
},
17+
{
18+
"cell_type": "markdown",
19+
"metadata": {},
20+
"source": [
21+
"#### 1. 查找函数"
22+
]
23+
},
24+
{
25+
"cell_type": "code",
26+
"execution_count": 38,
27+
"metadata": {},
28+
"outputs": [],
29+
"source": [
30+
"#np.lookfor('Series')"
31+
]
32+
},
33+
{
34+
"cell_type": "code",
35+
"execution_count": 40,
36+
"metadata": {
37+
"collapsed": true
38+
},
39+
"outputs": [],
40+
"source": [
41+
"pd.*date*?"
42+
]
43+
},
44+
{
45+
"cell_type": "code",
46+
"execution_count": 39,
47+
"metadata": {
48+
"collapsed": true
49+
},
50+
"outputs": [],
51+
"source": [
52+
"np.*load*?"
53+
]
54+
},
55+
{
56+
"cell_type": "markdown",
57+
"metadata": {},
58+
"source": [
59+
"#### 2. 测试程序运行时间"
60+
]
61+
},
62+
{
63+
"cell_type": "code",
64+
"execution_count": 43,
65+
"metadata": {},
66+
"outputs": [
67+
{
68+
"name": "stdout",
69+
"output_type": "stream",
70+
"text": [
71+
"The slowest run took 216.45 times longer than the fastest. This could mean that an intermediate result is being cached.\n",
72+
"1000000 loops, best of 3: 1.14 µs per loop\n"
73+
]
74+
}
75+
],
76+
"source": [
77+
"a=np.random.randn(10,10)\n",
78+
"%timeit np.dot(a,a)"
79+
]
80+
},
81+
{
82+
"cell_type": "markdown",
83+
"metadata": {},
84+
"source": [
85+
"#### 3. 记录日志"
86+
]
87+
},
88+
{
89+
"cell_type": "code",
90+
"execution_count": 41,
91+
"metadata": {
92+
"collapsed": true
93+
},
94+
"outputs": [],
95+
"source": [
96+
"logstart?"
97+
]
98+
},
99+
{
100+
"cell_type": "code",
101+
"execution_count": 42,
102+
"metadata": {},
103+
"outputs": [
104+
{
105+
"name": "stdout",
106+
"output_type": "stream",
107+
"text": [
108+
"Activating auto-logging. Current session state plus future input saved.\n",
109+
"Filename : ipython_log.py\n",
110+
"Mode : rotate\n",
111+
"Output logging : False\n",
112+
"Raw input log : False\n",
113+
"Timestamping : False\n",
114+
"State : active\n"
115+
]
116+
}
117+
],
118+
"source": [
119+
"%logstart"
120+
]
121+
},
122+
{
123+
"cell_type": "markdown",
124+
"metadata": {
125+
"collapsed": true
126+
},
127+
"source": [
128+
"## he "
129+
]
130+
},
131+
{
132+
"cell_type": "code",
133+
"execution_count": null,
134+
"metadata": {},
135+
"outputs": [],
136+
"source": [
137+
"%pylab\n",
138+
"# 模拟抛硬币的结果\n",
139+
"nsteps = 1000\n",
140+
"drws=random.randint(0,2,size=nsteps)\n",
141+
"step=where(drws>0,1,-1)#左闭,右开区间\n",
142+
"walk=step.cumsum()\n",
143+
"print(walk.min(),walk.max())"
144+
]
145+
},
146+
{
147+
"cell_type": "code",
148+
"execution_count": null,
149+
"metadata": {
150+
"collapsed": true
151+
},
152+
"outputs": [],
153+
"source": [
154+
"from pandas import Series,DataFrame"
155+
]
156+
},
157+
{
158+
"cell_type": "code",
159+
"execution_count": null,
160+
"metadata": {},
161+
"outputs": [],
162+
"source": [
163+
"obj=Series([4,5,62,6])\n",
164+
"print(obj.index,obj.values)"
165+
]
166+
},
167+
{
168+
"cell_type": "code",
169+
"execution_count": null,
170+
"metadata": {},
171+
"outputs": [],
172+
"source": [
173+
"obj.unique()"
174+
]
175+
},
176+
{
177+
"cell_type": "code",
178+
"execution_count": null,
179+
"metadata": {},
180+
"outputs": [],
181+
"source": [
182+
"DataFrame.append"
183+
]
184+
},
185+
{
186+
"cell_type": "code",
187+
"execution_count": null,
188+
"metadata": {},
189+
"outputs": [],
190+
"source": [
191+
"obj.drop([3,1])"
192+
]
193+
},
194+
{
195+
"cell_type": "code",
196+
"execution_count": null,
197+
"metadata": {},
198+
"outputs": [],
199+
"source": [
200+
"data=DataFrame(np.arange(16).reshape(4,4))\n",
201+
"data"
202+
]
203+
},
204+
{
205+
"cell_type": "code",
206+
"execution_count": null,
207+
"metadata": {},
208+
"outputs": [],
209+
"source": [
210+
"data.drop([1,2],axis=1)"
211+
]
212+
},
213+
{
214+
"cell_type": "code",
215+
"execution_count": null,
216+
"metadata": {},
217+
"outputs": [],
218+
"source": [
219+
"data[[0,1,3]]"
220+
]
221+
},
222+
{
223+
"cell_type": "code",
224+
"execution_count": null,
225+
"metadata": {},
226+
"outputs": [],
227+
"source": [
228+
"data.ix[1]"
229+
]
230+
}
231+
],
232+
"metadata": {
233+
"kernelspec": {
234+
"display_name": "Python 3",
235+
"language": "python",
236+
"name": "python3"
237+
},
238+
"language_info": {
239+
"codemirror_mode": {
240+
"name": "ipython",
241+
"version": 3
242+
},
243+
"file_extension": ".py",
244+
"mimetype": "text/x-python",
245+
"name": "python",
246+
"nbconvert_exporter": "python",
247+
"pygments_lexer": "ipython3",
248+
"version": "3.6.1"
249+
}
250+
},
251+
"nbformat": 4,
252+
"nbformat_minor": 2
253+
}

0 commit comments

Comments
 (0)