forked from neuraloperator/Geo-FNO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelas_interp_unet.py
228 lines (178 loc) · 7.14 KB
/
elas_interp_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch.nn.functional as F
import matplotlib.pyplot as plt
from timeit import default_timer
from utilities3 import *
from Adam import Adam
torch.manual_seed(0)
np.random.seed(0)
torch.cuda.manual_seed(0)
torch.backends.cudnn.deterministic = True
################################################################
# UNet
################################################################
""" UNET model: https://github.com/milesial/Pytorch-UNet"""
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels=3, n_classes=1, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = nn.Linear(n_channels, 32)
self.down1 = Down(32, 64)
self.down2 = Down(64, 128)
self.down3 = Down(128, 256)
factor = 2 if bilinear else 1
self.down4 = Down(256, 512 // factor)
self.up1 = Up(512, 256 // factor, bilinear)
self.up2 = Up(256, 128 // factor, bilinear)
self.up3 = Up(128, 64 // factor, bilinear)
self.up4 = Up(64, 32, bilinear)
self.outc = nn.Linear(32, n_classes)
def forward(self, x):
grid = self.get_grid(x.shape, x.device)
x = torch.cat((x, grid), dim=-1)
x1 = self.inc(x).permute(0,3,1,2)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
x = x.permute(0,2,3,1)
x = self.outc(x)
return x
def get_grid(self, shape, device):
batchsize, size_x, size_y = shape[0], shape[1], shape[2]
gridx = torch.tensor(np.linspace(0, 1, size_x), dtype=torch.float)
gridx = gridx.reshape(1, size_x, 1, 1).repeat([batchsize, 1, size_y, 1])
gridy = torch.tensor(np.linspace(0, 1, size_y), dtype=torch.float)
gridy = gridy.reshape(1, 1, size_y, 1).repeat([batchsize, size_x, 1, 1])
return torch.cat((gridx, gridy), dim=-1).to(device)
################################################################
# configs
################################################################
INPUT_PATH = '../data/elastic2/Random_UnitCell_mask_10_interp.npy'
OUTPUT_PATH = '../data/elastic2/Random_UnitCell_sigma_10_interp.npy'
Ntotal = 2000
ntrain = 1000
ntest = 200
batch_size = 20
learning_rate = 0.001
epochs = 501
step_size = 100
gamma = 0.5
modes = 12
width = 32
r = 1
h = int(((41 - 1) / r) + 1)
s = h
################################################################
# load data and data normalization
################################################################
input = np.load(INPUT_PATH)
input = torch.tensor(input, dtype=torch.float).permute(2,0,1)
output = np.load(OUTPUT_PATH)
output = torch.tensor(output, dtype=torch.float).permute(2,0,1)
x_train = input[:Ntotal][:ntrain, ::r, ::r][:, :s, :s]
y_train = output[:Ntotal][:ntrain, ::r, ::r][:, :s, :s]
x_test = input[:Ntotal][-ntest:, ::r, ::r][:, :s, :s]
y_test = output[:Ntotal][-ntest:, ::r, ::r][:, :s, :s]
x_train = x_train.reshape(ntrain, s, s, 1)
x_test = x_test.reshape(ntest, s, s, 1)
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_train, y_train), batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_test, y_test), batch_size=batch_size,
shuffle=False)
################################################################
# training and evaluation
################################################################
model = UNet().cuda()
print(count_params(model))
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
myloss = LpLoss(size_average=False)
for ep in range(epochs):
model.train()
t1 = default_timer()
train_l2 = 0
for x, y in train_loader:
x, y = x.cuda(), y.cuda()
mask = x.clone()
optimizer.zero_grad()
out = model(x)
out = out*mask
loss = myloss(out.view(batch_size, -1), y.view(batch_size, -1))
loss.backward()
optimizer.step()
train_l2 += loss.item()
scheduler.step()
model.eval()
test_l2 = 0.0
with torch.no_grad():
for x, y in test_loader:
x, y = x.cuda(), y.cuda()
mask = x.clone()
out = model(x)
out2 = out * mask
test_l2 += myloss(out2.view(batch_size, -1), y.view(batch_size, -1)).item()
train_l2 /= ntrain
test_l2 /= ntest
t2 = default_timer()
print(ep, t2 - t1, train_l2, test_l2)