This module contains classes and functions for doing linear algebra.
-
- This class represents a vector of arbitrary size and related operations.
Overview of the methods:
- constructor(components) : init the vector
- set(components) : changes the vector components.
- __str__() : toString method
- component(i): gets the i-th component (0-indexed)
- __len__() : gets the size / length of the vector (number of components)
- euclidean_length() : returns the eulidean length of the vector
- operator + : vector addition
- operator - : vector subtraction
- operator * : scalar multiplication and dot product
- copy() : copies this vector and returns it
- change_component(pos,value) : changes the specified component
-
function zero_vector(dimension)
- returns a zero vector of 'dimension'
-
function unit_basis_vector(dimension, pos)
- returns a unit basis vector with a one at index 'pos' (0-indexed)
-
function axpy(scalar, vector1, vector2)
- computes the axpy operation
-
function random_vector(N, a, b)
- returns a random vector of size N, with random integer components between 'a' and 'b' inclusive
-
- This class represents a matrix of arbitrary size and operations on it.
Overview of the methods:
- __str__() : returns a string representation
- operator * : implements the matrix vector multiplication implements the matrix-scalar multiplication.
- change_component(x, y, value) : changes the specified component.
- component(x, y) : returns the specified component.
- width() : returns the width of the matrix
- height() : returns the height of the matrix
- determinant() : returns the determinant of the matrix if it is square
- operator + : implements the matrix-addition.
- operator - : implements the matrix-subtraction
-
function square_zero_matrix(N)
- returns a square zero-matrix of dimension NxN
-
function random_matrix(W, H, a, b)
- returns a random matrix WxH with integer components between 'a' and 'b' inclusive
This module uses docstrings to enable the use of Python's in-built help(...)
function.
For instance, try help(Vector)
, help(unit_basis_vector)
, and help(CLASSNAME.METHODNAME)
.
Import the module lib.py
from the src directory into your project.
Alternatively, you can directly use the Python bytecode file lib.pyc
.
src/tests.py
contains Python unit tests which can be run with python3 -m unittest -v
.