forked from MaartenGr/BERTopic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
64 lines (58 loc) · 1.73 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import setuptools
test_packages = [
"pytest>=5.4.3",
"pytest-cov>=2.6.1"
]
docs_packages = [
"mkdocs==1.1",
"mkdocs-material==4.6.3",
"mkdocstrings==0.8.0",
]
dev_packages = docs_packages + test_packages
with open("README.md", "r") as fh:
long_description = fh.read()
setuptools.setup(
name="bertopic",
packages=["bertopic"],
version="0.3.0",
author="Maarten Grootendorst",
author_email="[email protected]",
description="BERTopic performs topic Modeling with state-of-the-art transformer models.",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/MaartenGr/BERTopic",
keywords="nlp bert topic modeling embeddings",
classifiers=[
"Programming Language :: Python",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"License :: OSI Approved :: MIT License",
"Topic :: Scientific/Engineering",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Operating System :: MacOS",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.8",
],
install_requires=[
'torch',
'tqdm',
'numpy',
'umap-learn',
'hdbscan',
'pandas',
'scikit_learn',
'sentence_transformers',
'joblib',
'matplotlib'
],
extras_require={
"test": test_packages,
"docs": docs_packages,
"dev": dev_packages,
},
python_requires='>=3.6',
)