-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetlistfm_average_scrape.py
145 lines (110 loc) · 3.63 KB
/
setlistfm_average_scrape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
Web scraping routines for setlist.fm's the pre-computed "average" setlist information.
This complements the more structured API calls elsewhere.
"""
__author__ = ["Mark Gotham", "Shujin Gan"]
from bs4 import BeautifulSoup
import pandas as pd
import re
from typing import Optional
from urllib.request import Request, urlopen
from urllib.error import HTTPError
# Constants
from utils import HEADERS, THIS_DIR, default_band_id_dict
BASE_URL = "https://www.setlist.fm"
def get_tour_ids(
artist_id: str,
headers: Optional[dict] = None
) -> list:
"""
Extract tour IDs from the stats page of an artist
(`https://www.setlist.fm/stats/{band_ID}.html`).
Args:
- artist_id (str): The ID of the artist.
- headers (dict): The headers to include in the HTTP request.
Returns:
- list: A list of tour IDs.
"""
if headers is None:
headers = HEADERS
target_url = f"{BASE_URL}/stats/{artist_id}.html"
req = Request(url=target_url, headers=headers)
try:
resp = urlopen(req)
except HTTPError as e:
print(f"Error occurred: {e}")
return []
soup = BeautifulSoup(resp, "html.parser", from_encoding=resp.info().get_param("charset"))
tour_ids = []
for link in soup.find_all("a", href=True):
pattern = r"\.\./stats/.*?tour=([^&]+)"
match_results = re.search(pattern, link["href"], re.IGNORECASE)
if match_results:
tour_id = match_results.group(1)
tour_ids.append(tour_id)
return tour_ids
def get_tour_name(soup: BeautifulSoup) -> str:
"""
Extract the tour name from the tour stats page.
Args:
- soup (BeautifulSoup): The parsed HTML of the tour stats page.
Returns:
- str: The tour name.
"""
h1_tag = soup.find("h1")
if h1_tag:
tour_name = h1_tag.get_text(strip=True)
tour_name = tour_name[26:]
return tour_name
else:
return "No <h1> tag found."
def get_songs(soup: BeautifulSoup) -> list:
"""
Extract the songs from the tour stats page.
Args:
- soup (BeautifulSoup): The parsed HTML of the tour stats page.
Returns:
- list: A list of songs.
"""
pattern = r'<a\s+class="songLabel"\s+href="[^"]*"\s+title="[^"]*">([^<]+)</a>'
matches = re.findall(pattern, str(soup))
return matches
def run_one(
artist_id: str = "coldplay-3d6bde3",
artist_name: str = "Coldplay",
headers: Optional[dict] = None
):
if headers is None:
headers = HEADERS
tour_ids = get_tour_ids(artist_id, headers)
tour_id_df = []
songs = []
tours = []
for tour_id in tour_ids:
target_url = f"{BASE_URL}/stats/average-setlist/{artist_id}.html?tour={tour_id}"
req = Request(url=target_url, headers=headers)
try:
resp = urlopen(req)
except HTTPError as e:
print(f"Error occurred: {e}")
continue
soup = BeautifulSoup(resp, "html.parser", from_encoding=resp.info().get_param("charset"))
tour_name = get_tour_name(soup)
print("Tour Name:", tour_name)
matches = get_songs(soup)
for song_label in matches:
tour_id_df.append(tour_id)
songs.append(song_label)
tours.append(tour_name)
df = pd.DataFrame({
"eventID": tour_id_df,
"tour": tours,
"song": songs
})
df.to_csv(THIS_DIR / "data" / f"{artist_name}_average_setlist.csv", index=False)
def run_all(band_dict: dict = default_band_id_dict) -> None:
for k in band_dict:
print(f"Now processing {k} ... ")
run_one(band_dict[k], k)
if __name__ == "__main__":
run_one()