forked from QuickChick/QuickChick
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDependentTest.v
435 lines (361 loc) · 13.1 KB
/
DependentTest.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
Set Warnings "-extraction-opaque-accessed,-extraction".
Set Warnings "-notation-overridden,-parsing".
From QuickChick Require Import QuickChick Tactics.
Require Import String. Open Scope string.
From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype seq.
Import GenLow GenHigh.
Require Import List.
Import ListNotations.
Import QcDefaultNotation. Open Scope qc_scope.
Require Export ExtLib.Structures.Monads.
Import MonadNotation.
Open Scope monad_scope.
Set Bullet Behavior "Strict Subproofs".
Derive ArbitrarySizedSuchThat for (fun x => eq x y).
Definition GenSizedSuchThateq_manual {A} (y_ : A) :=
let fix aux_arb (size : nat) (y_0 : A) {struct size} : G (option A) :=
match size with
| 0 => backtrack [(1, returnGen (Some y_0))]
| S _ => backtrack [(1, returnGen (Some y_0))]
end
in aux_arb^~ y_.
Theorem GenSizedSuchThateq_proof A (n : A) :
GenSizedSuchThateq_manual n = @arbitrarySizeST _ (fun x => eq x n) _.
Proof. reflexivity. Qed.
Inductive Foo :=
| Foo1 : Foo
| Foo2 : Foo -> Foo
| Foo3 : nat -> Foo -> Foo.
QuickChickWeights [(Foo1, 1); (Foo2, size); (Foo3, size)].
Derive (Arbitrary, Show) for Foo.
(* Use custom formatting of generated code, and prove them equal (by reflexivity) *)
(* begin show_foo *)
Fixpoint showFoo' (x : Foo) :=
match x with
| Foo1 => "Foo1"
| Foo2 f => "Foo2 " ++ smart_paren (showFoo' f)
| Foo3 n f => "Foo3 " ++ smart_paren (show n) ++
" " ++ smart_paren (showFoo' f)
end%string.
(* end show_foo *)
Lemma show_foo_equality : showFoo' = (@show Foo _).
Proof. reflexivity. Qed.
(* begin genFooSized *)
Fixpoint genFooSized (size : nat) :=
match size with
| O => returnGen Foo1
| S size' => freq [ (1, returnGen Foo1)
; (S size', f <- genFooSized size';;
ret (Foo2 f))
; (S size', n <- arbitrary ;;
f <- genFooSized size' ;;
ret (Foo3 n f))
]
end.
(* end genFooSized *)
(* begin shrink_foo *)
Fixpoint shrink_foo x :=
match x with
| Foo1 => []
| Foo2 f => ([f] ++ map (fun f' => Foo2 f') (shrink_foo f) ++ []) ++ []
| Foo3 n f => (map (fun n' => Foo3 n' f) (shrink n) ++ []) ++
([f] ++ map (fun f' => Foo3 n f') (shrink_foo f) ++ []) ++ []
end.
(* end shrink_foo *)
(* JH: Foo2 -> Foo1, Foo3 n f -> Foo2 f *)
(* Avoid exponential shrinking *)
Lemma genFooSizedNotation : genFooSized = @arbitrarySized Foo _.
Proof. reflexivity. Qed.
Lemma shrinkFoo_equality : shrink_foo = @shrink Foo _.
Proof. reflexivity. Qed.
(* Completely unrestricted case *)
(* begin good_foo *)
Inductive goodFoo : nat -> Foo -> Prop :=
| GoodFoo : forall n foo, goodFoo n foo.
(* end good_foo *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFoo n foo).
(* Need to write it as 'fun x => goodFoo 0 x'. Sadly, 'goodFoo 0' doesn't work *)
Definition g : G (option Foo) := @arbitrarySizeST _ (fun x => goodFoo 0 x) _ 4.
(* Sample g. *)
(* Simple generator for goodFoos *)
(* begin gen_good_foo_simple *)
(* Definition genGoodFoo {_ : Arbitrary Foo} (n : nat) : G Foo := arbitrary.*)
(* end gen_good_foo_simple *)
(* begin gen_good_foo *)
Definition genGoodFoo `{_ : Arbitrary Foo} (n : nat) :=
let fix aux_arb size n :=
match size with
| 0 => backtrack [(1, foo <- arbitrary ;; ret (Some foo))]
| S _ => backtrack [(1, foo <- arbitrary ;; ret (Some foo))]
end
in fun sz => aux_arb sz n.
(* end gen_good_foo *)
Lemma genGoodFoo_equality n :
genGoodFoo n = @arbitrarySizeST _ (fun foo => goodFoo n foo) _.
Proof. reflexivity. Qed.
(* Copy to extract just the relevant generator part *)
Definition genGoodFoo'' `{_ : Arbitrary Foo} (n : nat) :=
let fix aux_arb size n :=
match size with
| 0 => backtrack [(1,
(* begin gen_good_foo_gen *)
foo <- arbitrary;; ret (Some foo)
(* end gen_good_foo_gen *)
)]
| S _ => backtrack [(1, foo <- arbitrary;; ret (Some foo))]
end
in fun sz => aux_arb sz n.
Lemma genGoodFoo_equality' : genGoodFoo = genGoodFoo''.
Proof. reflexivity. Qed.
(* Basic Unification *)
(* begin good_unif *)
Inductive goodFooUnif : nat -> Foo -> Prop :=
| GoodUnif : forall n, goodFooUnif n Foo1.
(* end good_unif *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooUnif n foo).
Definition genGoodUnif (n : nat) :=
let fix aux_arb size n :=
match size with
| 0 => backtrack [(1,
(* begin good_foo_unif_gen *)
ret (Some Foo1)
(* end good_foo_unif_gen *)
)]
| S _ => backtrack [(1, ret (Some Foo1))]
end
in fun sz => aux_arb sz n.
Lemma genGoodUnif_equality n :
genGoodUnif n = @arbitrarySizeST _ (fun foo => goodFooUnif n foo) _.
Proof. reflexivity. Qed.
(* The foo is generated by arbitrary *)
(* begin good_foo_combo *)
Inductive goodFooCombo : nat -> Foo -> Prop :=
| GoodCombo : forall n foo, goodFooCombo n (Foo2 foo).
(* end good_foo_combo *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooCombo n foo).
Definition genGoodCombo `{_ : Arbitrary Foo} (n : nat) :=
let fix aux_arb size n :=
match size with
| 0 => backtrack [(1,
(* begin good_foo_combo_gen *)
foo <- arbitrary;; ret (Some (Foo2 foo))
(* end good_foo_combo_gen *)
)]
| S _ => backtrack [(1, foo <- arbitrary;; ret (Some (Foo2 foo)))]
end
in fun sz => aux_arb sz n.
Lemma genGoodCombo_equality n :
genGoodCombo n = @arbitrarySizeST _ (fun foo => goodFooCombo n foo) _.
Proof. reflexivity. Qed.
(* Requires input nat to match 0 *)
(* begin good_input_match *)
Inductive goodFooMatch : nat -> Foo -> Prop :=
| GoodMatch : goodFooMatch 0 Foo1.
(* end good_input_match *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooMatch n foo).
Definition genGoodMatch (n : nat) :=
let fix aux_arb size n :=
match size with
| 0 => backtrack [(1,
(* begin good_foo_match_gen *)
match n with
| 0 => ret (Some Foo1)
| _.+1 => ret None
end
(* end good_foo_match_gen *)
)]
| S _ => backtrack [(1,
match n with
| 0 => ret (Some Foo1)
| _.+1 => ret None
end)]
end
in fun sz => aux_arb sz n.
Lemma genGoodMatch_equality n :
genGoodMatch n = @arbitrarySizeST _ (fun foo => goodFooMatch n foo) _.
Proof. reflexivity. Qed.
(* Requires recursive call of generator *)
(* begin good_foo_rec *)
Inductive goodFooRec : nat -> Foo -> Prop :=
| GoodRecBase : forall n, goodFooRec n Foo1
| GoodRec : forall n foo, goodFooRec 0 foo -> goodFooRec n (Foo2 foo).
(* end good_foo_rec *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooRec n foo).
(* begin gen_good_rec *)
Definition genGoodRec (n : nat) :=
let fix aux_arb size n : G (option Foo) :=
match size with
| 0 => backtrack [(1, ret (Some Foo1))]
| S size' => backtrack [ (1, ret (Some Foo1))
; (1, bindGenOpt (aux_arb size' 0) (fun foo =>
ret (Some (Foo2 foo)))) ]
end
in fun sz => aux_arb sz n.
(* end gen_good_rec *)
Lemma genGoodRec_equality n :
genGoodRec n = @arbitrarySizeST _ (fun foo => goodFooRec n foo) _.
Proof. reflexivity. Qed.
(* Precondition *)
Inductive goodFooPrec : nat -> Foo -> Prop :=
| GoodPrecBase : forall n, goodFooPrec n Foo1
| GoodPrec : forall n foo, goodFooPrec 0 Foo1 -> goodFooPrec n foo.
Derive DecOpt for (goodFooPrec n foo).
Definition DecOptgoodFooPrec_manual (n_ : nat) (foo_ : Foo) :=
let fix aux_arb (size0 n_0 : nat) (foo_0 : Foo) {struct size0} : option bool :=
match size0 with
| 0 =>
checker_backtrack
[(fun u:unit =>
match foo_0 with
| Foo1 => Some true
| Foo2 _ => None
| Foo3 _ _ => None
end
)]
| size'.+1 =>
checker_backtrack
[(fun _ =>
match foo_0 with
| Foo1 => Some true
| Foo2 _ => None
| Foo3 _ _ => None
end)
;(fun _ =>
match aux_arb size' 0 Foo1 with
| Some _ => Some true
| None => None
end)
]
end in
fun size0 : nat => aux_arb size0 n_ foo_.
Theorem DecOptgoodFooPrec_proof n foo :
DecOptgoodFooPrec_manual n foo = @decOpt (goodFooPrec n foo) _.
Proof. Admitted.
Derive ArbitrarySizedSuchThat for (fun foo => goodFooPrec n foo).
Definition genGoodPrec (n : nat) : nat -> G (option (Foo)):=
let
fix aux_arb size (n : nat) : G (option (Foo)) :=
match size with
| O =>
backtrack [ (1, ret (Some Foo1))
; (1, match @decOpt (goodFooPrec O Foo1) _ 42 with
| Some true => foo <- arbitrary;;
ret (Some foo)
| _ => ret None
end
)]
| S size' =>
backtrack [ (1, ret (Some Foo1))
; (1, match @decOpt (goodFooPrec O Foo1) _ 42 with
| Some true => foo <- arbitrary;;
ret (Some foo)
| _ => ret None
end
)]
end in fun sz => aux_arb sz n.
Lemma genGoodPrec_equality n :
genGoodPrec n = @arbitrarySizeST _ (fun foo => goodFooPrec n foo) _.
Proof. reflexivity. Qed.
(* Generation followed by check - backtracking necessary *)
Inductive goodFooNarrow : nat -> Foo -> Prop :=
| GoodNarrowBase : forall n, goodFooNarrow n Foo1
| GoodNarrow : forall n foo, goodFooNarrow 0 foo ->
goodFooNarrow 1 foo ->
goodFooNarrow n foo.
Derive DecOpt for (goodFooNarrow n foo).
Definition goodFooNarrow_decOpt (n_ : nat) (foo_ : Foo) :=
let fix aux_arb (size0 n_0 : nat) (foo_0 : Foo) : option bool :=
match size0 with
| 0 =>
checker_backtrack
[(fun _ : unit =>
match foo_0 with
| Foo1 => Some true
| Foo2 _ => None
| Foo3 _ _ => None
end)]
| size'.+1 =>
checker_backtrack
[(fun _ : unit =>
match foo_0 with
| Foo1 => Some true
| Foo2 _ => None
| Foo3 _ _ => None
end) ;
(fun _ : unit =>
match aux_arb size' 0 foo_0 with
| Some _ =>
match aux_arb size' 1 foo_0 with
| Some _ => Some true
| None => None
end
| None => None
end)]
end in
fun size0 : nat => aux_arb size0 n_ foo_.
Lemma goodFooNarrow_decOpt_correct n foo :
goodFooNarrow_decOpt n foo = @decOpt (goodFooNarrow n foo) _.
Proof. Admitted.
Derive ArbitrarySizedSuchThat for (fun foo => goodFooNarrow n foo).
Definition genGoodNarrow (n : nat) : nat -> G (option (Foo)) :=
let
fix aux_arb size (n : nat) : G (option (Foo)) :=
match size with
| O => backtrack [(1, ret (Some Foo1))]
| S size' =>
backtrack [ (1, ret (Some Foo1))
; (1, bindGenOpt (aux_arb size' 0) (fun foo =>
match @decOpt (goodFooNarrow 1 foo) _ 42 with
| Some true => ret (Some foo)
| _ => ret None
end
))]
end in fun sz => aux_arb sz n.
Lemma genGoodNarrow_equality n :
genGoodNarrow n = @arbitrarySizeST _ (fun foo => goodFooNarrow n foo) _.
Proof. reflexivity. Qed.
(* Non-linear constraint *)
Inductive goodFooNL : nat -> Foo -> Foo -> Prop :=
| GoodNL : forall n foo, goodFooNL n (Foo2 foo) foo.
Instance EqDecFoo (f1 f2 : Foo) : Dec (f1 = f2).
dec_eq. Defined.
Derive ArbitrarySizedSuchThat for (fun foo => goodFooNL n m foo).
Derive DecOpt for (goodFooNL n m foo).
(* Parameters don't work yet :) *)
(*
Inductive Bar A B :=
| Bar1 : A -> Bar A B
| Bar2 : Bar A B -> Bar A B
| Bar3 : A -> B -> Bar A B -> Bar A B -> Bar A B.
Arguments Bar1 {A} {B} _.
Arguments Bar2 {A} {B} _.
Arguments Bar3 {A} {B} _ _ _ _.
Inductive goodBar {A B : Type} (n : nat) : Bar A B -> Prop :=
| goodBar1 : forall a, goodBar n (Bar1 a)
| goodBar2 : forall bar, goodBar 0 bar -> goodBar n (Bar2 bar)
| goodBar3 : forall a b bar,
goodBar n bar ->
goodBar n (Bar3 a b (Bar1 a) bar).
*)
(* Generation followed by check - backtracking necessary *)
(* Untouched variables - ex soundness bug *)
Inductive goodFooFalse : Foo -> Prop :=
| GoodFalse : forall (x : False), goodFooFalse Foo1.
Instance arbFalse : Gen False. Admitted.
Set Warnings "+quickchick-uninstantiated-variables".
Fail Derive ArbitrarySizedSuchThat for (fun foo => goodFooFalse foo).
Set Warnings "quickchick-uninstantiated-variables".
Definition addFoo2 (x : Foo) := Foo2 x.
Fixpoint foo_depth f :=
match f with
| Foo1 => 0
| Foo2 f => 1 + foo_depth f
| Foo3 n f => 1 + foo_depth f
end.
Derive ArbitrarySizedSuchThat for (fun n => goodFooPrec n x).
Inductive goodFun : Foo -> Prop :=
| GoodFun : forall (n : nat) (a : Foo), goodFooPrec n (addFoo2 a) ->
goodFun a.
Derive ArbitrarySizedSuchThat for (fun a => goodFun a).
Definition success := "success".
Print success.