forked from Kitware/ParaView
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation-catalyst-step3.py
206 lines (169 loc) · 5.65 KB
/
simulation-catalyst-step3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""This demo program solves the incompressible Navier-Stokes equations
on an L-shaped domain using Chorin's splitting method."""
# Copyright (C) 2010-2011 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Mikael Mortensen 2011
#
# First added: 2010-08-30
# Last changed: 2011-06-30
#
# SC14 Paraview's Catalyst tutorial
#
# Step 3 : complete coProcess function
#
# [SC14-Catalyst] we need a python environment that enables import of both Dolfin and ParaView
execfile("simulation-env.py")
# [SC14-Catalyst] import paraview, vtk and paraview's simple API
import sys
import paraview
import paraview.vtk as vtk
import paraview.simple as pvsimple
# [SC14-Catalyst] check for command line arguments
if len(sys.argv) != 3:
print "command is 'python",sys.argv[0],"<script name> <number of time steps>'"
sys.exit(1)
# [SC14-Catalyst] initialize and read input parameters
paraview.options.batch = True
paraview.options.symmetric = True
# [SC14-Catalyst] import user co-processing script
from paraview.modules import vtkPVCatalyst
import os
scriptpath, scriptname = os.path.split(sys.argv[1])
sys.path.append(scriptpath)
if scriptname.endswith(".py"):
print 'script name is ', scriptname
scriptname = scriptname[0:len(scriptname)-3]
try:
cpscript = __import__(scriptname)
except:
print sys.exc_info()
print 'Cannot find ', scriptname, ' -- no coprocessing will be performed.'
sys.exit(1)
# [SC14-Catalyst] Co-Processing routine to be called at the end of each simulation time step
def coProcess(grid, time, step):
# initialize data description
datadescription = vtkPVCatalyst.vtkCPDataDescription()
datadescription.SetTimeData(time, step)
datadescription.AddInput("input")
cpscript.RequestDataDescription(datadescription)
inputdescription = datadescription.GetInputDescriptionByName("input")
if inputdescription.GetIfGridIsNecessary() == False:
return
if grid != None:
# attach VTK data set to pipeline input
inputdescription.SetGrid(grid)
# execute catalyst processing
cpscript.DoCoProcessing(datadescription)
# Begin demo
from dolfin import *
# Print log messages only from the root process in parallel
parameters["std_out_all_processes"] = False;
# Load mesh from file
mesh = Mesh(DOLFIN_EXAMPLE_DATA_DIR+"/lshape.xml.gz")
# Define function spaces (P2-P1)
V = VectorFunctionSpace(mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Lagrange", 1)
# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)
# Set parameter values
dt = 0.01
T = 3
nu = 0.01
# Define time-dependent pressure boundary condition
p_in = Expression("sin(3.0*t)", t=0.0)
# Define boundary conditions
noslip = DirichletBC(V, (0, 0),
"on_boundary && \
(x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
(x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS")
outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcu = [noslip]
bcp = [inflow, outflow]
# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)
# Define coefficients
k = Constant(dt)
f = Constant((0, 0))
# Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \
nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)
# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx
# Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)
# Use amg preconditioner if available
prec = "amg" if has_krylov_solver_preconditioner("amg") else "default"
# Create files for storing solution
ufile = File("results/velocity.pvd")
pfile = File("results/pressure.pvd")
# Time-stepping
maxtimestep = int(sys.argv[2])
tstep = 0
t = dt
while tstep < maxtimestep:
# Update pressure boundary condition
p_in.t = t
# Compute tentative velocity step
begin("Computing tentative velocity")
b1 = assemble(L1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1, "gmres", "default")
end()
# Pressure correction
begin("Computing pressure correction")
b2 = assemble(L2)
[bc.apply(A2, b2) for bc in bcp]
solve(A2, p1.vector(), b2, "gmres", prec)
end()
# Velocity correction
begin("Computing velocity correction")
b3 = assemble(L3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3, "gmres", "default")
end()
# Plot solution [SC14-Catalyst] Not anymore
# plot(p1, title="Pressure", rescale=True)
# plot(u1, title="Velocity", rescale=True)
# Save to file [SC14-Catalyst] Not anymore
# ufile << u1
# pfile << p1
# [SC14-Catalyst] convert solution to VTK grid
ugrid = None
# [SC14-Catalyst] trigger catalyst execution
coProcess(ugrid,t,tstep)
# Move to next time step
u0.assign(u1)
t += dt
tstep += 1
print "t =", t, "step =",tstep
# Hold plot [SC14-Catalyst] Not anymore
# interactive()