forked from hrydgard/ppsspp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnitTest.cpp
414 lines (355 loc) · 11.7 KB
/
UnitTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// UnitTests
//
// This is a program to directly test various functions, without going
// through a PSP. Especially useful for things like opcode emitters,
// hashes, and various data conversion utility function.
//
// TODO: Make a test of nice unittest asserts and count successes etc.
// Or just integrate with an existing testing framework.
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <string>
#include <sstream>
#include "base/NativeApp.h"
#include "base/logging.h"
#include "Common/CPUDetect.h"
#include "Common/ArmEmitter.h"
#include "ext/disarm.h"
#include "math/math_util.h"
#include "util/text/parsers.h"
#include "Core/Config.h"
#include "Core/MIPS/MIPSVFPUUtils.h"
#include "unittest/JitHarness.h"
#include "unittest/UnitTest.h"
std::string System_GetProperty(SystemProperty prop) { return ""; }
int System_GetPropertyInt(SystemProperty prop) { return -1; }
#define M_PI_2 1.57079632679489661923
// asin acos atan: https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
// TODO:
// Fast approximate sincos for NEON
// http://blog.julien.cayzac.name/2009/12/fast-sinecosine-for-armv7neon.html
// Fast sincos
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
// minimax (surprisingly terrible! something must be wrong)
// double asin_plus_sqrtthing = .9998421793 + (1.012386649 + (-.6575341673 + .8999841642 + (-1.669668977 + (1.571945105 - .5860008052 * x) * x) * x) * x) * x;
// VERY good. 6 MAD, one division.
// double asin_plus_sqrtthing = (1.807607311 + (.191900116 + (-2.511278506 + (1.062519236 + (-.3572142480 + .1087063463 * x) * x) * x) * x) * x) / (1.807601897 - 1.615203794 * x);
// float asin_plus_sqrtthing_correct_ends =
// (1.807607311f + (.191900116f + (-2.511278506f + (1.062519236f + (-.3572142480f + .1087063463f * x) * x) * x) * x) * x) / (1.807607311f - 1.615195094 * x);
// Unfortunately this is very serial.
// At least there are only 8 constants needed - load them into two low quads and go to town.
// For every step, VDUP the constant into a new register (out of two alternating), then VMLA or VFMA into it.
// http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/arcsin/
// minimax polynomial rational approx, pretty good, get four digits consistently.
// unfortunately fastasin(1.0) / M_PI_2 != 1.0f, but it's pretty close.
float fastasin(double x) {
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
float sqrtthing = sqrt(1.0f - x * x);
// note that the sqrt can run parallel while we do the rest
// if the hardware supports it
float y = -.3572142480f + .1087063463f * x;
y = y * x + 1.062519236f;
y = y * x + -2.511278506f;
y = y * x + .191900116f;
y = y * x + 1.807607311f;
y /= (1.807607311f - 1.615195094 * x);
return sign * (y - sqrtthing);
}
double atan_66s(double x) {
const double c1=1.6867629106;
const double c2=0.4378497304;
const double c3=1.6867633134;
double x2; // The input argument squared
x2=x * x;
return (x*(c1 + x2*c2)/(c3 + x2));
}
// Terrible.
double fastasin2(double x) {
return atan_66s(x / sqrt(1 - x * x));
}
// Also terrible.
float fastasin3(float x) {
return x + x * x * x * x * x * 0.4971;
}
// Great! This is the one we'll use. Can be easily rescaled to get the right range for free.
// http://mathforum.org/library/drmath/view/54137.html
// http://www.musicdsp.org/showone.php?id=115
float fastasin4(float x) {
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
x = M_PI/2 - sqrtf(1.0f - x) * (1.5707288 + -0.2121144*x + 0.0742610*x*x + -0.0187293*x*x*x);
return sign * x;
}
// Or this:
float fastasin5(float x)
{
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
float fRoot = sqrtf(1.0f - x);
float fResult = 0.0742610f + -0.0187293f * x;
fResult = -0.2121144f + fResult * x;
fResult = 1.5707288f + fResult * x;
fResult = M_PI/2 - fRoot*fResult;
return sign * fResult;
}
// This one is unfortunately not very good. But lets us avoid PI entirely
// thanks to the special arguments of the PSP functions.
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
#define C 0.70710678118654752440f // 1.0f / sqrt(2.0f)
// Some useful constants (PI and <math.h> are not part of algo)
#define BITSPERQUARTER (20)
void fcs(float angle, float &sinout, float &cosout) {
int phasein = angle * (1 << BITSPERQUARTER);
// Modulo phase into quarter, convert to float 0..1
float modphase = (phasein & ((1<<BITSPERQUARTER)-1)) * (1.0f / (1<<BITSPERQUARTER));
// Extract quarter bits
int quarter = phasein >> BITSPERQUARTER;
// Recognize quarter
if (!quarter) {
// First quarter, angle = 0 .. pi/2
float x = modphase - 0.5f; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = temp + x; // 1 add
cosout = temp - x; // 1 sub
} else if (quarter == 1) {
// Second quarter, angle = pi/2 .. pi
float x = 0.5f - modphase; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = x + temp; // 1 add
cosout = x - temp; // 1 sub
} else if (quarter == 2) {
// Third quarter, angle = pi .. 1.5pi
float x = modphase - 0.5f; // 1 sub
float temp = (4*C - 2)*x*x - C; // 2 mul, 1 sub
sinout = temp - x; // 1 sub
cosout = temp + x; // 1 add
} else if (quarter == 3) {
// Fourth quarter, angle = 1.5pi..2pi
float x = modphase - 0.5f; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = x - temp; // 1 sub
cosout = x + temp; // 1 add
}
}
#undef C
const float PI_SQR = 9.86960440108935861883449099987615114f;
//https://code.google.com/p/math-neon/source/browse/trunk/math_floorf.c?r=18
// About 2 correct decimals. Not great.
void fcs2(float theta, float &outsine, float &outcosine) {
float gamma = theta + 1;
gamma += 2;
gamma /= 4;
theta += 2;
theta /= 4;
//theta -= (float)(int)theta;
//gamma -= (float)(int)gamma;
theta -= floorf(theta);
gamma -= floorf(gamma);
theta *= 4;
theta -= 2;
gamma *= 4;
gamma -= 2;
const float B = 2;
float x = 2 * gamma - gamma * abs(gamma);
float y = 2 * theta - theta * abs(theta);
const float P = 0.225;
outsine = P * (y * abs(y) - y) + y; // Q * y + P * y * abs(y)
outcosine = P * (x * abs(x) - x) + x; // Q * y + P * y * abs(y)
}
void fastsincos(float x, float &sine, float &cosine) {
fcs2(x, sine, cosine);
}
bool TestSinCos() {
for (int i = -100; i <= 100; i++) {
float f = i / 30.0f;
// The PSP sin/cos take as argument angle * M_PI_2.
// We need to match that.
float slowsin = sinf(f * M_PI_2), slowcos = cosf(f * M_PI_2);
float fastsin, fastcos;
fastsincos(f, fastsin, fastcos);
printf("%f: slow: %0.8f, %0.8f fast: %0.8f, %0.8f\n", f, slowsin, slowcos, fastsin, fastcos);
}
return true;
}
bool TestAsin() {
for (int i = -100; i <= 100; i++) {
float f = i / 100.0f;
float slowval = asinf(f) / M_PI_2;
float fastval = fastasin5(f) / M_PI_2;
printf("slow: %0.16f fast: %0.16f\n", slowval, fastval);
float diff = fabsf(slowval - fastval);
// EXPECT_TRUE(diff < 0.0001f);
}
// EXPECT_TRUE(fastasin(1.0) / M_PI_2 <= 1.0f);
return true;
}
bool TestMathUtil() {
EXPECT_FALSE(my_isinf(1.0));
volatile float zero = 0.0f;
EXPECT_TRUE(my_isinf(1.0f/zero));
EXPECT_FALSE(my_isnan(1.0f/zero));
return true;
}
bool TestParsers() {
const char *macstr = "01:02:03:ff:fe:fd";
uint8_t mac[6];
ParseMacAddress(macstr, mac);
EXPECT_TRUE(mac[0] == 1);
EXPECT_TRUE(mac[1] == 2);
EXPECT_TRUE(mac[2] == 3);
EXPECT_TRUE(mac[3] == 255);
EXPECT_TRUE(mac[4] == 254);
EXPECT_TRUE(mac[5] == 253);
return true;
}
bool TestVFPUSinCos() {
float sine, cosine;
vfpu_sincos(0.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, 1.0f);
vfpu_sincos(1.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(2.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 0.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, -1.0f);
vfpu_sincos(3.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, -1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(4.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, 1.0f);
vfpu_sincos(5.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
for (float angle = -10.0f; angle < 10.0f; angle++) {
vfpu_sincos(angle, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, sinf(angle * M_PI_2));
EXPECT_APPROX_EQ_FLOAT(cosine, cosf(angle * M_PI_2));
}
return true;
}
void TestGetMatrix(int matrix, MatrixSize sz) {
ILOG("Testing matrix %s", GetMatrixNotation(matrix, sz));
u8 fullMatrix[16];
u8 cols[4];
u8 rows[4];
GetMatrixColumns(matrix, sz, cols);
GetMatrixRows(matrix, sz, rows);
GetMatrixRegs(fullMatrix, sz, matrix);
int n = GetMatrixSide(sz);
VectorSize vsz = GetVectorSize(sz);
for (int i = 0; i < n; i++) {
// int colName = GetColumnName(matrix, sz, i, 0);
// int rowName = GetRowName(matrix, sz, i, 0);
int colName = cols[i];
int rowName = rows[i];
ILOG("Column %i: %s", i, GetVectorNotation(colName, vsz));
ILOG("Row %i: %s", i, GetVectorNotation(rowName, vsz));
u8 colRegs[4];
u8 rowRegs[4];
GetVectorRegs(colRegs, vsz, colName);
GetVectorRegs(rowRegs, vsz, rowName);
// Check that the individual regs are the expected ones.
std::stringstream a, b, c, d;
for (int j = 0; j < n; j++) {
a.clear();
b.clear();
a << (int)fullMatrix[i * 4 + j] << " ";
b << (int)colRegs[j] << " ";
c.clear();
d.clear();
c << (int)fullMatrix[j * 4 + i] << " ";
d << (int)rowRegs[j] << " ";
}
ILOG("Col: %s vs %s", a.str().c_str(), b.str().c_str());
if (a.str() != b.str())
ILOG("WRONG!");
ILOG("Row: %s vs %s", c.str().c_str(), d.str().c_str());
if (c.str() != d.str())
ILOG("WRONG!");
}
}
typedef bool (*TestFunc)();
struct TestItem {
const char *name;
TestFunc func;
};
#define TEST_ITEM(name) { #name, &Test ##name, }
bool TestArmEmitter();
bool TestX64Emitter();
TestItem availableTests[] = {
TEST_ITEM(Asin),
TEST_ITEM(SinCos),
TEST_ITEM(ArmEmitter),
TEST_ITEM(X64Emitter),
TEST_ITEM(VFPUSinCos),
TEST_ITEM(MathUtil),
TEST_ITEM(Parsers),
TEST_ITEM(Jit),
};
int main(int argc, const char *argv[]) {
cpu_info.bNEON = true;
cpu_info.bVFP = true;
cpu_info.bVFPv3 = true;
cpu_info.bVFPv4 = true;
g_Config.bEnableLogging = true;
bool allTests = false;
TestFunc testFunc = nullptr;
if (argc >= 2) {
if (!strcasecmp(argv[1], "all")) {
allTests = true;
}
for (auto f : availableTests) {
if (!strcasecmp(argv[1], f.name)) {
testFunc = f.func;
break;
}
}
}
if (allTests) {
int passes = 0;
int fails = 0;
for (auto f : availableTests) {
if (f.func()) {
++passes;
} else {
printf("%s: FAILED\n", f.name);
++fails;
}
}
if (passes > 0) {
printf("%d tests passed.\n", passes);
}
if (fails > 0) {
return 2;
}
} else if (testFunc == nullptr) {
fprintf(stderr, "You may select a test to run by passing an argument.\n");
fprintf(stderr, "\n");
fprintf(stderr, "Available tests:\n");
for (auto f : availableTests) {
fprintf(stderr, " * %s\n", f.name);
}
return 1;
} else {
if (!testFunc()) {
return 2;
}
}
return 0;
}