forked from filecoin-project/bellperson
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmimc.rs
308 lines (255 loc) · 9.21 KB
/
mimc.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
mod util;
// For randomness (during paramgen and proof generation)
use rand::thread_rng;
// For benchmarking
use std::time::{Duration, Instant};
use std::ops::AddAssign;
// Bring in some tools for using pairing-friendly curves
use ff::{Field, PrimeField};
use group::Group;
use pairing::Engine;
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use blstrs::{Bls12, Scalar as Fr};
// We'll use these interfaces to construct our circuit.
use bellperson::{Circuit, ConstraintSystem, SynthesisError};
// We're going to use the Groth16 proving system.
use bellperson::groth16::{
create_random_proof, create_random_proof_batch, generate_random_parameters,
prepare_verifying_key, verify_proof, verify_proofs_batch, Proof,
};
use std::iter;
const MIMC_ROUNDS: usize = 322;
/// This is an implementation of MiMC, specifically a
/// variant named `LongsightF322p3` for BLS12-381.
/// See http://eprint.iacr.org/2016/492 for more
/// information about this construction.
///
/// ```
/// function LongsightF322p3(xL ⦂ Fp, xR ⦂ Fp) {
/// for i from 0 up to 321 {
/// xL, xR := xR + (xL + Ci)^3, xL
/// }
/// return xL
/// }
/// ```
fn mimc<Scalar: PrimeField>(mut xl: Scalar, mut xr: Scalar, constants: &[Scalar]) -> Scalar {
assert_eq!(constants.len(), MIMC_ROUNDS);
for constant in constants {
let mut tmp1 = xl;
tmp1.add_assign(constant);
let mut tmp2 = tmp1;
tmp2 = tmp2.square();
tmp2.mul_assign(&tmp1);
tmp2.add_assign(&xr);
xr = xl;
xl = tmp2;
}
xl
}
/// This is our demo circuit for proving knowledge of the
/// preimage of a MiMC hash invocation.
#[derive(Clone)]
struct MimcDemo<'a, Scalar: PrimeField> {
xl: Option<Scalar>,
xr: Option<Scalar>,
constants: &'a [Scalar],
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, Scalar: PrimeField> Circuit<Scalar> for MimcDemo<'a, Scalar> {
fn synthesize<CS: ConstraintSystem<Scalar>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
assert_eq!(self.constants.len(), MIMC_ROUNDS);
// Allocate the first component of the preimage.
let mut xl_value = self.xl;
let mut xl = cs.alloc(
|| "preimage xl",
|| xl_value.ok_or(SynthesisError::AssignmentMissing),
)?;
// Allocate the second component of the preimage.
let mut xr_value = self.xr;
let mut xr = cs.alloc(
|| "preimage xr",
|| xr_value.ok_or(SynthesisError::AssignmentMissing),
)?;
for i in 0..MIMC_ROUNDS {
// xL, xR := xR + (xL + Ci)^3, xL
let cs = &mut cs.namespace(|| format!("round {}", i));
// tmp = (xL + Ci)^2
let tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.square()
});
let tmp = cs.alloc(
|| "tmp",
|| tmp_value.ok_or(SynthesisError::AssignmentMissing),
)?;
cs.enforce(
|| "tmp = (xL + Ci)^2",
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + tmp,
);
// new_xL = xR + (xL + Ci)^3
// new_xL = xR + tmp * (xL + Ci)
// new_xL - xR = tmp * (xL + Ci)
let new_xl_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.mul_assign(&tmp_value.unwrap());
e.add_assign(&xr_value.unwrap());
e
});
let new_xl = if i == (MIMC_ROUNDS - 1) {
// This is the last round, xL is our image and so
// we allocate a public input.
cs.alloc_input(
|| "image",
|| new_xl_value.ok_or(SynthesisError::AssignmentMissing),
)?
} else {
cs.alloc(
|| "new_xl",
|| new_xl_value.ok_or(SynthesisError::AssignmentMissing),
)?
};
cs.enforce(
|| "new_xL = xR + (xL + Ci)^3",
|lc| lc + tmp,
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + new_xl - xr,
);
// xR = xL
xr = xl;
xr_value = xl_value;
// xL = new_xL
xl = new_xl;
xl_value = new_xl_value;
}
Ok(())
}
}
#[test]
fn test_mimc() {
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS)
.map(|_| Fr::random(&mut *rng))
.collect::<Vec<_>>();
println!("Creating parameters...");
// Create parameters for our circuit
let params = {
let c = MimcDemo::<Fr> {
xl: None,
xr: None,
constants: &constants,
};
generate_random_parameters(c, &mut *rng).unwrap()
};
// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(¶ms.vk);
#[cfg(feature = "cuda-supraseal")]
let params = util::supraseal::supraseal_params(params);
println!("Creating proofs...");
// Let's benchmark stuff!
const SAMPLES: u32 = 50;
let mut total_proving = Duration::new(0, 0);
let mut total_verifying = Duration::new(0, 0);
// Just a place to put the proof data, so we can
// benchmark deserialization.
let mut proof_vec = vec![];
let mut proofs = vec![];
let mut images = vec![];
for _ in 0..SAMPLES {
// Generate a random preimage and compute the image
let xl = Fr::random(&mut *rng);
let xr = Fr::random(&mut *rng);
let image = mimc::<Fr>(xl, xr, &constants);
proof_vec.truncate(0);
let start = Instant::now();
{
// Create an instance of our circuit (with the
// witness)
let c = MimcDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants,
};
// Create a groth16 proof with our parameters.
let proof = create_random_proof(c, ¶ms, &mut *rng).unwrap();
proof.write(&mut proof_vec).unwrap();
}
total_proving += start.elapsed();
let start = Instant::now();
let proof = Proof::read(&proof_vec[..]).unwrap();
// Check the proof
assert!(verify_proof(&pvk, &proof, &[image]).unwrap());
total_verifying += start.elapsed();
proofs.push(proof);
images.push(vec![image]);
}
// batch verification
println!("Creating batch proofs...");
let proving_batch = Instant::now();
{
let circuits = iter::repeat_with(|| {
// Create an instance of our circuit (with the
// witness)
let xl = <Bls12 as Engine>::Fr::random(&mut *rng);
let xr = <Bls12 as Engine>::Fr::random(&mut *rng);
MimcDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants,
}
})
.take(SAMPLES as usize)
.collect();
// Create a groth16 proof with our parameters.
let proofs = create_random_proof_batch(circuits, ¶ms, &mut *rng).unwrap();
assert_eq!(proofs.len(), 50);
}
let proving_batch = proving_batch.elapsed().as_secs_f64();
println!(
"Proving time batch: {:04}s ({:04}s / proof)",
proving_batch,
proving_batch / SAMPLES as f64,
);
let proving_avg = total_proving / SAMPLES;
let proving_avg = proving_avg.as_secs_f64();
let verifying_avg = total_verifying / SAMPLES;
let verifying_avg = verifying_avg.as_secs_f64();
println!("Average proving time: {:08}s", proving_avg);
println!("Average verifying time: {:08}s", verifying_avg);
// batch verification
{
let start = Instant::now();
let proofs: Vec<_> = proofs.iter().collect();
let valid = verify_proofs_batch(&pvk, &mut rand::rngs::OsRng, &proofs, &images).unwrap();
println!(
"Batch verification of {} proofs: {:04}s ({:04}s/proof)",
proofs.len(),
start.elapsed().as_secs_f64(),
start.elapsed().as_secs_f64() / (proofs.len() as f64),
);
assert!(valid, "failed batch verification");
// check that invalid proofs don't validate
let mut bad_proofs = proofs
.iter()
.map(|p| (*p).clone())
.collect::<Vec<Proof<Bls12>>>();
for mut bad_proof in bad_proofs.iter_mut() {
use group::Curve;
let p = &mut bad_proof;
let mut a: <Bls12 as Engine>::G1 = p.a.into();
a.add_assign(&<Bls12 as Engine>::G1::generator());
p.a = a.to_affine();
}
let bad_proofs_ref = bad_proofs.iter().collect::<Vec<_>>();
assert!(
!verify_proofs_batch(&pvk, &mut rand::rngs::OsRng, &bad_proofs_ref[..], &images)
.unwrap()
);
}
}