forked from soulmachine/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapString.tex
1174 lines (906 loc) · 30.5 KB
/
chapString.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{字符串}
\section{Valid Palindrome} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:valid-palindrome}
\subsubsection{描述}
Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases.
For example,\\
\code{"A man, a plan, a canal: Panama"} is a palindrome.\\
\code{"race a car"} is not a palindrome.
Note:
Have you consider that the string might be empty? This is a good question to ask during an interview.
For the purpose of this problem, we define empty string as valid palindrome.
\subsubsection{分析}
无
\subsubsection{代码}
\begin{Code}
// Leet Code, Valid Palindrome
// 时间复杂度O(n),空间复杂度O(1)
class Solution {
public:
bool isPalindrome(string s) {
transform(s.begin(), s.end(), s.begin(), ::tolower);
auto left = s.begin(), right = prev(s.end());
while (left < right) {
if (!::isalnum(*left)) ++left;
else if (!::isalnum(*right)) --right;
else if (*left != *right) return false;
else{ left++, right--; }
}
return true;
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item Palindrome Number, 见 \S \ref{sec:palindrome-number}
\myenddot
\section{Implement strStr()} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:strstr}
\subsubsection{描述}
Implement strStr().
Returns a pointer to the first occurrence of needle in haystack, or null if needle is not part of haystack.
\subsubsection{分析}
暴力算法的复杂度是 $O(m*n)$,代码如下。更高效的的算法有KMP算法、Boyer-Mooer算法和Rabin-Karp算法。面试中暴力算法足够了,一定要写得没有BUG。
\subsubsection{暴力匹配}
\begin{Code}
// LeetCode, Implement strStr()
// 暴力解法,时间复杂度O(N*M),空间复杂度O(1)
class Solution {
public:
char *strStr(const char *haystack, const char *needle) {
// if needle is empty return the full string
if (!*needle) return (char*) haystack;
const char *p1;
const char *p2;
const char *p1_advance = haystack;
for (p2 = &needle[1]; *p2; ++p2) {
p1_advance++; // advance p1_advance M-1 times
}
for (p1 = haystack; *p1_advance; p1_advance++) {
char *p1_old = (char*) p1;
p2 = needle;
while (*p1 && *p2 && *p1 == *p2) {
p1++;
p2++;
}
if (!*p2) return p1_old;
p1 = p1_old + 1;
}
return nullptr;
}
};
\end{Code}
\subsubsection{KMP}
\begin{Code}
// LeetCode, Implement strStr()
// KMP,时间复杂度O(N+M),空间复杂度O(M)
class Solution {
public:
char *strStr(const char *haystack, const char *needle) {
int pos = kmp(haystack, needle);
if (pos == -1) return nullptr;
else return (char*)haystack + pos;
}
private:
/*
* @brief 计算部分匹配表,即next数组.
*
* @param[in] pattern 模式串
* @param[out] next next数组
* @return 无
*/
static void compute_prefix(const char *pattern, int next[]) {
int i;
int j = -1;
const int m = strlen(pattern);
next[0] = j;
for (i = 1; i < m; i++) {
while (j > -1 && pattern[j + 1] != pattern[i]) j = next[j];
if (pattern[i] == pattern[j + 1]) j++;
next[i] = j;
}
}
/*
* @brief KMP算法.
*
* @param[in] text 文本
* @param[in] pattern 模式串
* @return 成功则返回第一次匹配的位置,失败则返回-1
*/
static int kmp(const char *text, const char *pattern) {
int i;
int j = -1;
const int n = strlen(text);
const int m = strlen(pattern);
if (n == 0 && m == 0) return 0; /* "","" */
if (m == 0) return 0; /* "a","" */
int *next = (int*)malloc(sizeof(int) * m);
compute_prefix(pattern, next);
for (i = 0; i < n; i++) {
while (j > -1 && pattern[j + 1] != text[i]) j = next[j];
if (text[i] == pattern[j + 1]) j++;
if (j == m - 1) {
free(next);
return i-j;
}
}
free(next);
return -1;
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item String to Integer (atoi) ,见 \S \ref{sec:string-to-integer}
\myenddot
\section{String to Integer (atoi)} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:string-to-integer}
\subsubsection{描述}
Implement \fn{atoi} to convert a string to an integer.
\textbf{Hint}: Carefully consider all possible input cases. If you want a challenge, please do not see below and ask yourself what are the possible input cases.
\textbf{Notes}: It is intended for this problem to be specified vaguely (ie, no given input specs). You are responsible to gather all the input requirements up front.
\textbf{Requirements for atoi}:
The function first discards as many whitespace characters as necessary until the first non-whitespace character is found. Then, starting from this character, takes an optional initial plus or minus sign followed by as many numerical digits as possible, and interprets them as a numerical value.
The string can contain additional characters after those that form the integral number, which are ignored and have no effect on the behavior of this function.
If the first sequence of non-whitespace characters in str is not a valid integral number, or if no such sequence exists because either str is empty or it contains only whitespace characters, no conversion is performed.
If no valid conversion could be performed, a zero value is returned. If the correct value is out of the range of representable values, \code{INT_MAX (2147483647)} or \code{INT_MIN (-2147483648)} is returned.
\subsubsection{分析}
细节题。注意几个测试用例:
\begin{enumerate}
\item 不规则输入,但是有效,"-3924x8fc", " + 413",
\item 无效格式," ++c", " ++1"
\item 溢出数据,"2147483648"
\end{enumerate}
\subsubsection{代码}
\begin{Code}
// LeetCode, String to Integer (atoi)
// 时间复杂度O(n),空间复杂度O(1)
class Solution {
public:
int atoi(const char *str) {
int num = 0;
int sign = 1;
const int n = strlen(str);
int i = 0;
while (str[i] == ' ' && i < n) i++;
if (str[i] == '+') {
i++;
} else if (str[i] == '-') {
sign = -1;
i++;
}
for (; i < n; i++) {
if (str[i] < '0' || str[i] > '9')
break;
if (num > INT_MAX / 10 ||
(num == INT_MAX / 10 &&
(str[i] - '0') > INT_MAX % 10)) {
return sign == -1 ? INT_MIN : INT_MAX;
}
num = num * 10 + str[i] - '0';
}
return num * sign;
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item Implement strStr() ,见 \S \ref{sec:strstr}
\myenddot
\section{Add Binary} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:add-binary}
\subsubsection{描述}
Given two binary strings, return their sum (also a binary string).
For example,
\begin{Code}
a = "11"
b = "1"
\end{Code}
Return {\small \fontspec{Latin Modern Mono} "100"}.
\subsubsection{分析}
无
\subsubsection{代码}
\begin{Code}
//LeetCode, Add Binary
// 时间复杂度O(n),空间复杂度O(1)
class Solution {
public:
string addBinary(string a, string b) {
string result;
const size_t n = a.size() > b.size() ? a.size() : b.size();
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
int carry = 0;
for (size_t i = 0; i < n; i++) {
const int ai = i < a.size() ? a[i] - '0' : 0;
const int bi = i < b.size() ? b[i] - '0' : 0;
const int val = (ai + bi + carry) % 2;
carry = (ai + bi + carry) / 2;
result.insert(result.begin(), val + '0');
}
if (carry == 1) {
result.insert(result.begin(), '1');
}
return result;
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item Add Two Numbers, 见 \S \ref{sec:add-two-numbers}
\myenddot
\section{Longest Palindromic Substring} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:longest-palindromic-substring}
\subsubsection{描述}
Given a string $S$, find the longest palindromic substring in $S$. You may assume that the maximum length of $S$ is 1000, and there exists one unique longest palindromic substring.
\subsubsection{分析}
最长回文子串,非常经典的题。
思路一:暴力枚举,以每个元素为中间元素,同时从左右出发,复杂度$O(n^2)$。
思路二:记忆化搜索,复杂度$O(n^2)$。设\fn{f[i][j]} 表示[i,j]之间的最长回文子串,递推方程如下:
\begin{Code}
f[i][j] = if (i == j) S[i]
if (S[i] == S[j] && f[i+1][j-1] == S[i+1][j-1]) S[i][j]
else max(f[i+1][j-1], f[i][j-1], f[i+1][j])
\end{Code}
思路三:动规,复杂度$O(n^2)$。设状态为\fn{f(i,j)},表示区间[i,j]是否为回文串,则状态转移方程为
$$
f(i,j)=\begin{cases}
true & ,i=j\\
S[i]=S[j] & , j = i + 1 \\
S[i]=S[j] \text{ and } f(i+1, j-1) & , j > i + 1
\end{cases}
$$
思路三:Manacher’s Algorithm, 复杂度$O(n)$。详细解释见 \myurl{http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html} 。
\subsubsection{备忘录法}
\begin{Code}
// LeetCode, Longest Palindromic Substring
// 备忘录法,会超时
// 时间复杂度O(n^2),空间复杂度O(n^2)
typedef string::const_iterator Iterator;
namespace std {
template<>
struct hash<pair<Iterator, Iterator>> {
size_t operator()(pair<Iterator, Iterator> const& p) const {
return ((size_t) &(*p.first)) ^ ((size_t) &(*p.second));
}
};
}
class Solution {
public:
string longestPalindrome(string const& s) {
cache.clear();
return cachedLongestPalindrome(s.begin(), s.end());
}
private:
unordered_map<pair<Iterator, Iterator>, string> cache;
string longestPalindrome(Iterator first, Iterator last) {
size_t length = distance(first, last);
if (length < 2) return string(first, last);
auto s = cachedLongestPalindrome(next(first), prev(last));
if (s.length() == length - 2 && *first == *prev(last))
return string(first, last);
auto s1 = cachedLongestPalindrome(next(first), last);
auto s2 = cachedLongestPalindrome(first, prev(last));
// return max(s, s1, s2)
if (s.size() > s1.size()) return s.size() > s2.size() ? s : s2;
else return s1.size() > s2.size() ? s1 : s2;
}
string cachedLongestPalindrome(Iterator first, Iterator last) {
auto key = make_pair(first, last);
auto pos = cache.find(key);
if (pos != cache.end()) return pos->second;
else return cache[key] = longestPalindrome(first, last);
}
};
\end{Code}
\subsubsection{动规}
\begin{Code}
// LeetCode, Longest Palindromic Substring
// 动规,时间复杂度O(n^2),空间复杂度O(n^2)
class Solution {
public:
string longestPalindrome(string s) {
const int n = s.size();
bool f[n][n];
fill_n(&f[0][0], n * n, false);
// 用 vector 会超时
//vector<vector<bool> > f(n, vector<bool>(n, false));
size_t max_len = 1, start = 0; // 最长回文子串的长度,起点
for (size_t i = 0; i < s.size(); i++) {
f[i][i] = true;
for (size_t j = 0; j < i; j++) { // [j, i]
f[j][i] = (s[j] == s[i] && (i - j < 2 || f[j + 1][i - 1]));
if (f[j][i] && max_len < (i - j + 1)) {
max_len = i - j + 1;
start = j;
}
}
}
return s.substr(start, max_len);
}
};
\end{Code}
\subsubsection{Manacher’s Algorithm}
\begin{Code}
// LeetCode, Longest Palindromic Substring
// Manacher’s Algorithm
// 时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
// Transform S into T.
// For example, S = "abba", T = "^#a#b#b#a#$".
// ^ and $ signs are sentinels appended to each end to avoid bounds checking
string preProcess(string s) {
int n = s.length();
if (n == 0) return "^$";
string ret = "^";
for (int i = 0; i < n; i++) ret += "#" + s.substr(i, 1);
ret += "#$";
return ret;
}
string longestPalindrome(string s) {
string T = preProcess(s);
const int n = T.length();
// 以T[i]为中心,向左/右扩张的长度,不包含T[i]自己,
// 因此 P[i]是源字符串中回文串的长度
int P[n];
int C = 0, R = 0;
for (int i = 1; i < n - 1; i++) {
int i_mirror = 2 * C - i; // equals to i' = C - (i-C)
P[i] = (R > i) ? min(R - i, P[i_mirror]) : 0;
// Attempt to expand palindrome centered at i
while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
P[i]++;
// If palindrome centered at i expand past R,
// adjust center based on expanded palindrome.
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
}
// Find the maximum element in P.
int max_len = 0;
int center_index = 0;
for (int i = 1; i < n - 1; i++) {
if (P[i] > max_len) {
max_len = P[i];
center_index = i;
}
}
return s.substr((center_index - 1 - max_len) / 2, max_len);
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item 无
\myenddot
\section{Regular Expression Matching} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:regular-expression-matching}
\subsubsection{描述}
Implement regular expression matching with support for \fn{'.'} and \fn{'*'}.
\fn{'.'} Matches any single character.
\fn{'*'} Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
The function prototype should be:
\begin{Code}
bool isMatch(const char *s, const char *p)
\end{Code}
Some examples:
\begin{Code}
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "a*") → true
isMatch("aa", ".*") → true
isMatch("ab", ".*") → true
isMatch("aab", "c*a*b") → true
\end{Code}
\subsubsection{分析}
这是一道很有挑战的题。
\subsubsection{递归版}
\begin{Code}
// LeetCode, Regular Expression Matching
// 递归版,时间复杂度O(n),空间复杂度O(1)
class Solution {
public:
bool isMatch(const char *s, const char *p) {
if (*p == '\0') return *s == '\0';
// next char is not '*', then must match current character
if (*(p + 1) != '*') {
if (*p == *s || (*p == '.' && *s != '\0'))
return isMatch(s + 1, p + 1);
else
return false;
} else { // next char is '*'
while (*p == *s || (*p == '.' && *s != '\0')) {
if (isMatch(s, p + 2))
return true;
s++;
}
return isMatch(s, p + 2);
}
}
};
\end{Code}
\subsubsection{迭代版}
\begin{Code}
\end{Code}
\subsubsection{相关题目}
\begindot
\item Wildcard Matching, 见 \S \ref{sec:wildcard-matching}
\myenddot
\section{Wildcard Matching} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:wildcard-matching}
\subsubsection{描述}
Implement wildcard pattern matching with support for \fn{'?'} and \fn{'*'}.
\fn{'?'} Matches any single character.
\fn{'*'} Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
The function prototype should be:
\begin{Code}
bool isMatch(const char *s, const char *p)
\end{Code}
Some examples:
\begin{Code}
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "*") → true
isMatch("aa", "a*") → true
isMatch("ab", "?*") → true
isMatch("aab", "c*a*b") → false
\end{Code}
\subsubsection{分析}
跟上一题很类似。
主要是\fn{'*'}的匹配问题。\fn{p}每遇到一个\fn{'*'},就保留住当前\fn{'*'}的坐标和\fn{s}的坐标,然后\fn{s}从前往后扫描,如果不成功,则\fn{s++},重新扫描。
\subsubsection{递归版}
\begin{Code}
// LeetCode, Wildcard Matching
// 递归版,会超时,用于帮助理解题意
// 时间复杂度O(n!*m!),空间复杂度O(n)
class Solution {
public:
bool isMatch(const char *s, const char *p) {
if (*p == '*') {
while (*p == '*') ++p; //skip continuous '*'
if (*p == '\0') return true;
while (*s != '\0' && !isMatch(s, p)) ++s;
return *s != '\0';
}
else if (*p == '\0' || *s == '\0') return *p == *s;
else if (*p == *s || *p == '?') return isMatch(++s, ++p);
else return false;
}
};
\end{Code}
\subsubsection{迭代版}
\begin{Code}
// LeetCode, Wildcard Matching
// 迭代版,时间复杂度O(n*m),空间复杂度O(1)
class Solution {
public:
bool isMatch(const char *s, const char *p) {
bool star = false;
const char *str, *ptr;
for (str = s, ptr = p; *str != '\0'; str++, ptr++) {
switch (*ptr) {
case '?':
break;
case '*':
star = true;
s = str, p = ptr;
while (*p == '*') p++; //skip continuous '*'
if (*p == '\0') return true;
str = s - 1;
ptr = p - 1;
break;
default:
if (*str != *ptr) {
// 如果前面没有'*',则匹配不成功
if (!star) return false;
s++;
str = s - 1;
ptr = p - 1;
}
}
}
while (*ptr == '*') ptr++;
return (*ptr == '\0');
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item Regular Expression Matching, 见 \S \ref{sec:regular-expression-matching}
\myenddot
\section{Longest Common Prefix} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:longest-common-prefix}
\subsubsection{描述}
Write a function to find the longest common prefix string amongst an array of strings.
\subsubsection{分析}
从位置0开始,对每一个位置比较所有字符串,直到遇到一个不匹配。
\subsubsection{纵向扫描}
\begin{Code}
// LeetCode, Longest Common Prefix
// 纵向扫描,从位置0开始,对每一个位置比较所有字符串,直到遇到一个不匹配
// 时间复杂度O(n1+n2+...)
// @author 周倩 (http://weibo.com/zhouditty)
class Solution {
public:
string longestCommonPrefix(vector<string> &strs) {
if (strs.empty()) return "";
for (int idx = 0; idx < strs[0].size(); ++idx) { // 纵向扫描
for (int i = 1; i < strs.size(); ++i) {
if (strs[i][idx] != strs[0][idx]) return strs[0].substr(0,idx);
}
}
return strs[0];
}
};
\end{Code}
\subsubsection{横向扫描}
\begin{Code}
// LeetCode, Longest Common Prefix
// 横向扫描,每个字符串与第0个字符串,从左到右比较,直到遇到一个不匹配,
// 然后继续下一个字符串
// 时间复杂度O(n1+n2+...)
class Solution {
public:
string longestCommonPrefix(vector<string> &strs) {
if (strs.empty()) return "";
int right_most = strs[0].size() - 1;
for (size_t i = 1; i < strs.size(); i++)
for (int j = 0; j <= right_most; j++)
if (strs[i][j] != strs[0][j]) // 不会越界,请参考string::[]的文档
right_most = j - 1;
return strs[0].substr(0, right_most + 1);
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item 无
\myenddot
\section{Valid Number} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:valid-number}
\subsubsection{描述}
Validate if a given string is numeric.
Some examples:
\begin{Code}
"0" => true
" 0.1 " => true
"abc" => false
"1 a" => false
"2e10" => true
\end{Code}
Note: It is intended for the problem statement to be ambiguous. You should gather all requirements up front before implementing one.
\subsubsection{分析}
细节实现题。
本题的功能与标准库中的\fn{strtod()}功能类似。
\subsubsection{有限自动机}
\begin{Code}
// LeetCode, Valid Number
// @author 龚陆安 (http://weibo.com/luangong)
// finite automata,时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
bool isNumber(const char *s) {
enum InputType {
INVALID, // 0
SPACE, // 1
SIGN, // 2
DIGIT, // 3
DOT, // 4
EXPONENT, // 5
NUM_INPUTS // 6
};
const int transitionTable[][NUM_INPUTS] = {
-1, 0, 3, 1, 2, -1, // next states for state 0
-1, 8, -1, 1, 4, 5, // next states for state 1
-1, -1, -1, 4, -1, -1, // next states for state 2
-1, -1, -1, 1, 2, -1, // next states for state 3
-1, 8, -1, 4, -1, 5, // next states for state 4
-1, -1, 6, 7, -1, -1, // next states for state 5
-1, -1, -1, 7, -1, -1, // next states for state 6
-1, 8, -1, 7, -1, -1, // next states for state 7
-1, 8, -1, -1, -1, -1, // next states for state 8
};
int state = 0;
for (; *s != '\0'; ++s) {
InputType inputType = INVALID;
if (isspace(*s))
inputType = SPACE;
else if (*s == '+' || *s == '-')
inputType = SIGN;
else if (isdigit(*s))
inputType = DIGIT;
else if (*s == '.')
inputType = DOT;
else if (*s == 'e' || *s == 'E')
inputType = EXPONENT;
// Get next state from current state and input symbol
state = transitionTable[state][inputType];
// Invalid input
if (state == -1) return false;
}
// If the current state belongs to one of the accepting (final) states,
// then the number is valid
return state == 1 || state == 4 || state == 7 || state == 8;
}
};
\end{Code}
\subsubsection{使用strtod()}
\begin{Code}
// LeetCode, Valid Number
// @author 连城 (http://weibo.com/lianchengzju)
// 偷懒,直接用 strtod(),时间复杂度O(n)
class Solution {
public:
bool isNumber (char const* s) {
char* endptr;
strtod (s, &endptr);
if (endptr == s) return false;
for (; *endptr; ++endptr)
if (!isspace (*endptr)) return false;
return true;
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item 无
\myenddot
\section{Integer to Roman} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:integer-to-roman}
\subsubsection{描述}
Given an integer, convert it to a roman numeral.
Input is guaranteed to be within the range from 1 to 3999.
\subsubsection{分析}
无
\subsubsection{代码}
\begin{Code}
// LeetCode, Integer to Roman
// 时间复杂度O(num),空间复杂度O(1)
class Solution {
public:
string intToRoman(int num) {
const int radix[] = {1000, 900, 500, 400, 100, 90,
50, 40, 10, 9, 5, 4, 1};
const string symbol[] = {"M", "CM", "D", "CD", "C", "XC",
"L", "XL", "X", "IX", "V", "IV", "I"};
string roman;
for (size_t i = 0; num > 0; ++i) {
int count = num / radix[i];
num %= radix[i];
for (; count > 0; --count) roman += symbol[i];
}
return roman;
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item Roman to Integer, 见 \S \ref{sec:roman-to-integer}
\myenddot
\section{Roman to Integer} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:roman-to-integer}
\subsubsection{描述}
Given a roman numeral, convert it to an integer.
Input is guaranteed to be within the range from 1 to 3999.
\subsubsection{分析}
从前往后扫描,用一个临时变量记录分段数字。
如果当前比前一个大,说明这一段的值应该是当前这个值减去上一个值。比如\fn{IV = 5 – 1};否则,将当前值加入到结果中,然后开始下一段记录。比如\fn{VI = 5 + 1, II=1+1}
\subsubsection{代码}
\begin{Code}
// LeetCode, Roman to Integer
// 时间复杂度O(n),空间复杂度O(1)
class Solution {
public:
inline int map(const char c) {
switch (c) {
case 'I': return 1;
case 'V': return 5;
case 'X': return 10;
case 'L': return 50;
case 'C': return 100;
case 'D': return 500;
case 'M': return 1000;
default: return 0;
}
}
int romanToInt(string s) {
int result = 0;
for (size_t i = 0; i < s.size(); i++) {
if (i > 0 && map(s[i]) > map(s[i - 1])) {
result += (map(s[i]) - 2 * map(s[i - 1]));
} else {
result += map(s[i]);
}
}
return result;
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item Integer to Roman, 见 \S \ref{sec:integer-to-roman}
\myenddot
\section{Count and Say} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:count-and-say}
\subsubsection{描述}
The count-and-say sequence is the sequence of integers beginning as follows:
\begin{Code}
1, 11, 21, 1211, 111221, ...
\end{Code}
\fn{1} is read off as \fn{"one 1"} or \fn{11}.
\fn{11} is read off as \fn{"two 1s"} or \fn{21}.
\fn{21} is read off as \fn{"one 2"}, then \fn{"one 1"} or \fn{1211}.
Given an integer $n$, generate the nth sequence.
Note: The sequence of integers will be represented as a string.
\subsubsection{分析}
模拟。
\subsubsection{代码}
\begin{Code}
// LeetCode, Count and Say
// @author 连城 (http://weibo.com/lianchengzju)
// 时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
string countAndSay(int n) {
string s("1");
while (--n)
s = getNext(s);
return s;
}
string getNext(const string &s) {
stringstream ss;
for (auto i = s.begin(); i != s.end(); ) {
auto j = find_if(i, s.end(), bind1st(not_equal_to<char>(), *i));
ss << distance(i, j) << *i;
i = j;
}
return ss.str();
}
};
\end{Code}
\subsubsection{相关题目}
\begindot
\item 无
\myenddot
\section{Anagrams} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\label{sec:anagrams}
\subsubsection{描述}
Given an array of strings, return all groups of strings that are anagrams.