Skip to content

Files

This branch is 6 commits behind MasteringOpenCV/code:master.

Chapter7_HeadPoseEstimation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Dec 9, 2012
Dec 9, 2012
Dec 9, 2012
Dec 29, 2012
Dec 29, 2012
Dec 29, 2012
Dec 29, 2012
Dec 29, 2012
Dec 29, 2012
Dec 29, 2012
Dec 29, 2012
Dec 9, 2012
******************************************************************************
*   3D Head Pose Estimation using AAM and POSIT
******************************************************************************
*   by Daniel Lélis Baggio, 29th Dec 2012
*   http://code.google.com/p/ehci/
******************************************************************************
*   Ch7 of the book "Mastering OpenCV with Practical Computer Vision Projects"
*   Copyright Packt Publishing 2012.
*   http://www.packtpub.com/cool-projects-with-opencv/book
******************************************************************************


----------------------------------------------------------
Building the project using CMake from the command-line:
----------------------------------------------------------
Linux:
    export OpenCV_DIR="~/OpenCV/build"
    mkdir build
    cd build
    cmake -D OpenCV_DIR=$OpenCV_DIR ..
    make 

MacOSX (Xcode):
    export OpenCV_DIR="~/OpenCV/build"
    mkdir build
    cd build
    cmake -G Xcode -D OpenCV_DIR=$OpenCV_DIR ..
    open HeadOrientation.xcodeproj

Windows (MS Visual Studio):
    set OpenCV_DIR="C:\OpenCV\build"
    mkdir build
    cd build
    cmake -G "Visual Studio 9 2008" -D OpenCV_DIR=%OpenCV_DIR% ..
    start HeadOrientation.sln 
    
----------------------------------------------------------
Running the project:
----------------------------------------------------------
Simply run the HeadOrientation executable. This should load a simple-aam as well as some example images so the reader can become familiar with eigenvalues used in the image PCA. Sliding the bars will instance a new AAM which will be displayed on top of the training images. Hitting 'c' will close the application. The keys '1', '2', and '3' will change the displayed training image.