forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextending.html
729 lines (552 loc) · 45.7 KB
/
extending.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Extending PyTorch — PyTorch master documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/notes/extending.html"/>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Frequently Asked Questions" href="faq.html" />
<link rel="prev" title="CUDA semantics" href="cuda.html" />
<script src="../_static/js/modernizr.min.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/features">Features</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active">
<a href="https://pytorch.org/docs/stable/index.html">Docs</a>
</li>
<li>
<a href="https://pytorch.org/resources">Resources</a>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href="http://pytorch.org/docs/versions.html">master (1.1.0a0+c3a0000 ) ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div>
<a style="color:#F05732" href="https://pytorch.org/docs/stable/notes/extending.html">
You are viewing unstable developer preview docs.
Click here to view docs for latest stable release.
</a>
</div>
<p class="caption"><span class="caption-text">Notes</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">CUDA semantics</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="windows.html">Windows FAQ</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html#torch-nn-functional">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html#torch-nn-init">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../multiprocessing.html">torch.multiprocessing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed_deprecated.html">torch.distributed.deprecated</a></li>
</ul>
<p class="caption"><span class="caption-text">torchvision Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torchvision/index.html">torchvision</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>Extending PyTorch</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/notes/extending.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="extending-pytorch">
<h1>Extending PyTorch<a class="headerlink" href="#extending-pytorch" title="Permalink to this headline">¶</a></h1>
<p>In this note we’ll cover ways of extending <a class="reference internal" href="../nn.html#module-torch.nn" title="torch.nn"><code class="xref py py-mod docutils literal notranslate"><span class="pre">torch.nn</span></code></a>,
<a class="reference internal" href="../autograd.html#module-torch.autograd" title="torch.autograd"><code class="xref py py-mod docutils literal notranslate"><span class="pre">torch.autograd</span></code></a>, and writing custom C extensions utilizing our C
libraries.</p>
<div class="section" id="extending-torch-autograd">
<h2>Extending <a class="reference internal" href="../autograd.html#module-torch.autograd" title="torch.autograd"><code class="xref py py-mod docutils literal notranslate"><span class="pre">torch.autograd</span></code></a><a class="headerlink" href="#extending-torch-autograd" title="Permalink to this headline">¶</a></h2>
<p>Adding operations to <a class="reference internal" href="../autograd.html#module-torch.autograd" title="torch.autograd"><code class="xref py py-mod docutils literal notranslate"><span class="pre">autograd</span></code></a> requires implementing a new
<a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">Function</span></code></a> subclass for each operation. Recall that <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">Function</span></code></a> s
are what <a class="reference internal" href="../autograd.html#module-torch.autograd" title="torch.autograd"><code class="xref py py-mod docutils literal notranslate"><span class="pre">autograd</span></code></a> uses to compute the results and gradients, and
encode the operation history. Every new function requires you to implement 2
methods:</p>
<ul class="simple">
<li><a class="reference internal" href="../autograd.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> - the code that performs the operation. It can take
as many arguments as you want, with some of them being optional, if you
specify the default values. All kinds of Python objects are accepted here.
<code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code> arguments that track history (i.e., with
<code class="docutils literal notranslate"><span class="pre">requires_grad=True</span></code>) will be converted to ones that don’t track history
before the call, and their use will be registered in the graph. Note that this
logic won’t traverse lists/dicts/any other data structures and will only
consider <code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code> s that are direct arguments to the call. You can
return either a single <code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code> output, or a <a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#tuple" title="(in Python v3.7)"><code class="xref py py-class docutils literal notranslate"><span class="pre">tuple</span></code></a> of
<code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code> s if there are multiple outputs. Also, please refer to the
docs of <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">Function</span></code></a> to find descriptions of useful methods that can be
called only from <a class="reference internal" href="../autograd.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a>.</li>
<li><a class="reference internal" href="../autograd.html#torch.autograd.Function.backward" title="torch.autograd.Function.backward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">backward()</span></code></a> - gradient formula. It will be given
as many <code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code> arguments as there were outputs, with each of them
representing gradient w.r.t. that output. It should return as many
<code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code> s as there were inputs, with each of them containing the
gradient w.r.t. its corresponding input. If your inputs didn’t require
gradient (<code class="xref py py-attr docutils literal notranslate"><span class="pre">needs_input_grad</span></code> is a tuple of booleans indicating
whether each input needs gradient computation), or were non-<code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code>
objects, you can return <code class="xref py py-class docutils literal notranslate"><span class="pre">None</span></code>. Also, if you have optional
arguments to <a class="reference internal" href="../autograd.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> you can return more gradients than there
were inputs, as long as they’re all <a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.7)"><code class="docutils literal notranslate"><span class="pre">None</span></code></a>.</li>
</ul>
<p>Below you can find code for a <code class="docutils literal notranslate"><span class="pre">Linear</span></code> function from <a class="reference internal" href="../nn.html#module-torch.nn" title="torch.nn"><code class="xref py py-mod docutils literal notranslate"><span class="pre">torch.nn</span></code></a>, with
additional comments:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># Inherit from Function</span>
<span class="k">class</span> <span class="nc">LinearFunction</span><span class="p">(</span><span class="n">Function</span><span class="p">):</span>
<span class="c1"># Note that both forward and backward are @staticmethods</span>
<span class="nd">@staticmethod</span>
<span class="c1"># bias is an optional argument</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">mm</span><span class="p">(</span><span class="n">weight</span><span class="o">.</span><span class="n">t</span><span class="p">())</span>
<span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">output</span> <span class="o">+=</span> <span class="n">bias</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">expand_as</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span>
<span class="c1"># This function has only a single output, so it gets only one gradient</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">):</span>
<span class="c1"># This is a pattern that is very convenient - at the top of backward</span>
<span class="c1"># unpack saved_tensors and initialize all gradients w.r.t. inputs to</span>
<span class="c1"># None. Thanks to the fact that additional trailing Nones are</span>
<span class="c1"># ignored, the return statement is simple even when the function has</span>
<span class="c1"># optional inputs.</span>
<span class="nb">input</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="n">grad_input</span> <span class="o">=</span> <span class="n">grad_weight</span> <span class="o">=</span> <span class="n">grad_bias</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># These needs_input_grad checks are optional and there only to</span>
<span class="c1"># improve efficiency. If you want to make your code simpler, you can</span>
<span class="c1"># skip them. Returning gradients for inputs that don't require it is</span>
<span class="c1"># not an error.</span>
<span class="k">if</span> <span class="n">ctx</span><span class="o">.</span><span class="n">needs_input_grad</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
<span class="n">grad_input</span> <span class="o">=</span> <span class="n">grad_output</span><span class="o">.</span><span class="n">mm</span><span class="p">(</span><span class="n">weight</span><span class="p">)</span>
<span class="k">if</span> <span class="n">ctx</span><span class="o">.</span><span class="n">needs_input_grad</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span>
<span class="n">grad_weight</span> <span class="o">=</span> <span class="n">grad_output</span><span class="o">.</span><span class="n">t</span><span class="p">()</span><span class="o">.</span><span class="n">mm</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">ctx</span><span class="o">.</span><span class="n">needs_input_grad</span><span class="p">[</span><span class="mi">2</span><span class="p">]:</span>
<span class="n">grad_bias</span> <span class="o">=</span> <span class="n">grad_output</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">return</span> <span class="n">grad_input</span><span class="p">,</span> <span class="n">grad_weight</span><span class="p">,</span> <span class="n">grad_bias</span>
</pre></div>
</div>
<p>Now, to make it easier to use these custom ops, we recommend aliasing their
<code class="docutils literal notranslate"><span class="pre">apply</span></code> method:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">linear</span> <span class="o">=</span> <span class="n">LinearFunction</span><span class="o">.</span><span class="n">apply</span>
</pre></div>
</div>
<p>Here, we give an additional example of a function that is parametrized by
non-Tensor arguments:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MulConstant</span><span class="p">(</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">tensor</span><span class="p">,</span> <span class="n">constant</span><span class="p">):</span>
<span class="c1"># ctx is a context object that can be used to stash information</span>
<span class="c1"># for backward computation</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">constant</span> <span class="o">=</span> <span class="n">constant</span>
<span class="k">return</span> <span class="n">tensor</span> <span class="o">*</span> <span class="n">constant</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">):</span>
<span class="c1"># We return as many input gradients as there were arguments.</span>
<span class="c1"># Gradients of non-Tensor arguments to forward must be None.</span>
<span class="k">return</span> <span class="n">grad_output</span> <span class="o">*</span> <span class="n">ctx</span><span class="o">.</span><span class="n">constant</span><span class="p">,</span> <span class="kc">None</span>
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Inputs to <code class="docutils literal notranslate"><span class="pre">backward</span></code>, i.e., <code class="xref py py-attr docutils literal notranslate"><span class="pre">grad_output</span></code>, can also be Tensors that
track history. So if <code class="docutils literal notranslate"><span class="pre">backward</span></code> is implemented with differentiable
operations, (e.g., invocation of another custom
<code class="xref py py-class docutils literal notranslate"><span class="pre">function</span></code>), higher order derivatives will work.</p>
</div>
<p>You probably want to check if the backward method you implemented actually
computes the derivatives of your function. It is possible by comparing with
numerical approximations using small finite differences:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">torch.autograd</span> <span class="k">import</span> <span class="n">gradcheck</span>
<span class="c1"># gradcheck takes a tuple of tensors as input, check if your gradient</span>
<span class="c1"># evaluated with these tensors are close enough to numerical</span>
<span class="c1"># approximations and returns True if they all verify this condition.</span>
<span class="nb">input</span> <span class="o">=</span> <span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span><span class="mi">20</span><span class="p">,</span><span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">double</span><span class="p">,</span><span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">30</span><span class="p">,</span><span class="mi">20</span><span class="p">,</span><span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">double</span><span class="p">,</span><span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">test</span> <span class="o">=</span> <span class="n">gradcheck</span><span class="p">(</span><span class="n">linear</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-6</span><span class="p">,</span> <span class="n">atol</span><span class="o">=</span><span class="mf">1e-4</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">test</span><span class="p">)</span>
</pre></div>
</div>
<p>See <a class="reference internal" href="../autograd.html#grad-check"><span class="std std-ref">Numerical gradient checking</span></a> for more details on finite-difference gradient comparisons.</p>
</div>
<div class="section" id="extending-torch-nn">
<h2>Extending <a class="reference internal" href="../nn.html#module-torch.nn" title="torch.nn"><code class="xref py py-mod docutils literal notranslate"><span class="pre">torch.nn</span></code></a><a class="headerlink" href="#extending-torch-nn" title="Permalink to this headline">¶</a></h2>
<p><a class="reference internal" href="../nn.html#module-torch.nn" title="torch.nn"><code class="xref py py-mod docutils literal notranslate"><span class="pre">nn</span></code></a> exports two kinds of interfaces - modules and their functional
versions. You can extend it in both ways, but we recommend using modules for
all kinds of layers, that hold any parameters or buffers, and recommend using
a functional form parameter-less operations like activation functions, pooling,
etc.</p>
<p>Adding a functional version of an operation is already fully covered in the
section above.</p>
<div class="section" id="adding-a-module">
<h3>Adding a <a class="reference internal" href="../nn.html#torch.nn.Module" title="torch.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a><a class="headerlink" href="#adding-a-module" title="Permalink to this headline">¶</a></h3>
<p>Since <a class="reference internal" href="../nn.html#module-torch.nn" title="torch.nn"><code class="xref py py-mod docutils literal notranslate"><span class="pre">nn</span></code></a> heavily utilizes <a class="reference internal" href="../autograd.html#module-torch.autograd" title="torch.autograd"><code class="xref py py-mod docutils literal notranslate"><span class="pre">autograd</span></code></a>, adding a new
<a class="reference internal" href="../nn.html#torch.nn.Module" title="torch.nn.Module"><code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code></a> requires implementing a <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">Function</span></code></a>
that performs the operation and can compute the gradient. From now on let’s
assume that we want to implement a <code class="docutils literal notranslate"><span class="pre">Linear</span></code> module and we have the function
implemented as in the listing above. There’s very little code required to
add this. Now, there are two functions that need to be implemented:</p>
<ul class="simple">
<li><code class="docutils literal notranslate"><span class="pre">__init__</span></code> (<em>optional</em>) - takes in arguments such as kernel sizes, numbers
of features, etc. and initializes parameters and buffers.</li>
<li><a class="reference internal" href="../nn.html#torch.nn.Module.forward" title="torch.nn.Module.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> - instantiates a <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">Function</span></code></a> and
uses it to perform the operation. It’s very similar to a functional wrapper
shown above.</li>
</ul>
<p>This is how a <code class="docutils literal notranslate"><span class="pre">Linear</span></code> module can be implemented:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Linear</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_features</span><span class="p">,</span> <span class="n">output_features</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Linear</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">input_features</span> <span class="o">=</span> <span class="n">input_features</span>
<span class="bp">self</span><span class="o">.</span><span class="n">output_features</span> <span class="o">=</span> <span class="n">output_features</span>
<span class="c1"># nn.Parameter is a special kind of Tensor, that will get</span>
<span class="c1"># automatically registered as Module's parameter once it's assigned</span>
<span class="c1"># as an attribute. Parameters and buffers need to be registered, or</span>
<span class="c1"># they won't appear in .parameters() (doesn't apply to buffers), and</span>
<span class="c1"># won't be converted when e.g. .cuda() is called. You can use</span>
<span class="c1"># .register_buffer() to register buffers.</span>
<span class="c1"># nn.Parameters require gradients by default.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">(</span><span class="n">output_features</span><span class="p">,</span> <span class="n">input_features</span><span class="p">))</span>
<span class="k">if</span> <span class="n">bias</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">(</span><span class="n">output_features</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># You should always register all possible parameters, but the</span>
<span class="c1"># optional ones can be None if you want.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span><span class="s1">'bias'</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># Not a very smart way to initialize weights</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">uniform_</span><span class="p">(</span><span class="o">-</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">)</span>
<span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">uniform_</span><span class="p">(</span><span class="o">-</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
<span class="c1"># See the autograd section for explanation of what happens here.</span>
<span class="k">return</span> <span class="n">LinearFunction</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">bias</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">extra_repr</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="c1"># (Optional)Set the extra information about this module. You can test</span>
<span class="c1"># it by printing an object of this class.</span>
<span class="k">return</span> <span class="s1">'in_features=</span><span class="si">{}</span><span class="s1">, out_features=</span><span class="si">{}</span><span class="s1">, bias=</span><span class="si">{}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">in_features</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_features</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="writing-custom-c-extensions">
<h2>Writing custom C++ extensions<a class="headerlink" href="#writing-custom-c-extensions" title="Permalink to this headline">¶</a></h2>
<p>See this
<a class="reference external" href="https://pytorch.org/tutorials/advanced/cpp_extension.html">PyTorch tutorial</a>
for a detailed explanation and examples.</p>
<p>Documentations are available at <a class="reference internal" href="../cpp_extension.html"><span class="doc">torch.utils.cpp_extension</span></a>.</p>
</div>
<div class="section" id="id1">
<h2>Writing custom C extensions<a class="headerlink" href="#id1" title="Permalink to this headline">¶</a></h2>
<p>Example available at
<a class="reference external" href="https://github.com/pytorch/extension-ffi">this GitHub repository</a>.</p>
</div>
</div>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="faq.html" class="btn btn-neutral float-right" title="Frequently Asked Questions" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="cuda.html" class="btn btn-neutral" title="CUDA semantics" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2018, Torch Contributors.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Extending PyTorch</a><ul>
<li><a class="reference internal" href="#extending-torch-autograd">Extending <code class="docutils literal notranslate"><span class="pre">torch.autograd</span></code></a></li>
<li><a class="reference internal" href="#extending-torch-nn">Extending <code class="docutils literal notranslate"><span class="pre">torch.nn</span></code></a><ul>
<li><a class="reference internal" href="#adding-a-module">Adding a <code class="docutils literal notranslate"><span class="pre">Module</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#writing-custom-c-extensions">Writing custom C++ extensions</a></li>
<li><a class="reference internal" href="#id1">Writing custom C extensions</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/language_data.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js"></script>
<script type="text/javascript" src="../_static/katex_autorenderer.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-90545585-1', 'auto');
ga('send', 'pageview');
</script>
<img height="1" width="1" style="border-style:none;" alt="" src="http://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&guid=ON&script=0"/>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://pytorch.org/resources">Resources</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/support">Support</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.slack.com" target="_blank">Slack</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md" target="_blank">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col follow-us-col">
<ul>
<li class="list-title">Follow Us</li>
<li>
<div id="mc_embed_signup">
<form
action="https://twitter.us14.list-manage.com/subscribe/post?u=75419c71fe0a935e53dfa4a3f&id=91d0dccd39"
method="post"
id="mc-embedded-subscribe-form"
name="mc-embedded-subscribe-form"
class="email-subscribe-form validate"
target="_blank"
novalidate>
<div id="mc_embed_signup_scroll" class="email-subscribe-form-fields-wrapper">
<div class="mc-field-group">
<label for="mce-EMAIL" style="display:none;">Email Address</label>
<input type="email" value="" name="EMAIL" class="required email" id="mce-EMAIL" placeholder="Email Address">
</div>
<div id="mce-responses" class="clear">
<div class="response" id="mce-error-response" style="display:none"></div>
<div class="response" id="mce-success-response" style="display:none"></div>
</div> <!-- real people should not fill this in and expect good things - do not remove this or risk form bot signups-->
<div style="position: absolute; left: -5000px;" aria-hidden="true"><input type="text" name="b_75419c71fe0a935e53dfa4a3f_91d0dccd39" tabindex="-1" value=""></div>
<div class="clear">
<input type="submit" value="" name="subscribe" id="mc-embedded-subscribe" class="button email-subscribe-button">
</div>
</div>
</form>
</div>
</li>
</ul>
<div class="footer-social-icons">
<a href="https://www.facebook.com/pytorch" target="_blank" class="facebook"></a>
<a href="https://twitter.com/pytorch" target="_blank" class="twitter"></a>
</div>
</div>
</div>
</div>
</footer>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="#">Get Started</a>
</li>
<li>
<a href="#">Features</a>
</li>
<li>
<a href="#">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active">
<a href="https://pytorch.org/docs/stable/index.html">Docs</a>
</li>
<li>
<a href="https://pytorch.org/resources">Resources</a>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>