-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrapper_bpnn.py
214 lines (193 loc) · 8.45 KB
/
wrapper_bpnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import time
import datetime
import numpy as np
import bpnn as NN
import progressbar
class WrapperBPNN:
def __init__(self):
self.attr=[2, 25, 26, 28, 31, 32, 33, 37, 40, 46, 50, 52, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 72]
self.begin, self.end, self.step = 0, 64, 8
self.init_network()
def test_network(self, test_data):
start_time = time.time()
print "Raw classification result"
self.nn.test(test_data)
elapsed_time = time.time() - start_time
print "Net classification result w/ threshold"
for data in test_data:
print (
'Actual result is: ', self.threshold(self.nn.update(data[0])), "The correct result is: ", data[1])
print "Time elapsed druing classifying: {0}".format(elapsed_time)
def init_network(self):
# TODO: Init NN dynamically (accord. to data training lengths)
try:
self.training_data = self.get_training_data()
self.testing_data = self.get_testing_data()
self.nn = NN.NN(self.ni, self.nh, self.no)
if(self.load_network()):
self.nwstatus = "Loaded"
else:
print "Load function could NOT be used,RANDOMLY GENERATING NEURAL NETWORK"
self.nn.__init__(self.ni, self.nh, self.no)
except Exception as e:
print "Unexpected error at init_network: ", e
return False
def get_training_data(self, path="samples/", reg="fq"):
print "Getting training data from: ", path
# TODO: Setting the sample rates begin,end,step here OR dimensions of
# nw according to the training data
ninput = 0
for i in range(self.end):
if i % self.step == 0:
ninput += 1
try:
movs = os.listdir(path)
num_movement = len(movs)
# self.ni = ninput
# self.no = num_movement
# self.nh = ninput + 2
self.ni = len(self.attr)
self.no = num_movement
self.nh = ninput+5
eye = np.eye(num_movement)
data = []
for i in range(len(movs)):
dirpath = path + "/" + movs[i] + "/"
samples = os.listdir(dirpath)
for j in range(len(samples)):
try:
if reg in samples[j]:
spath = dirpath + "/" + samples[j]
sdata = np.loadtxt(fname=spath)
data.append(
[[sdata[j] for j in self.attr], eye[i]])
except Exception as e:
print (e)
print (samples[j])
return data
except Exception as e:
print "Unexpected error:", e
else:
print "Training data Successfully loaded"
def get_testing_data(self, path="test/", reg="fq"):
try:
test_data = []
eye = np.eye(self.no)
test_movs = os.listdir(path)
num_mov = len(test_movs)
for i in range(len(test_movs)):
dirpath = path + "/" + test_movs[i] + "/"
tdata_subfolder = os.listdir(dirpath)
for j in range(len(tdata_subfolder)):
if reg in tdata_subfolder[j]:
tpath = dirpath + "/" + tdata_subfolder[j]
tdata = np.loadtxt(fname=tpath)
test_data.append(
[ [tdata[j] for j in self.attr], eye[i]])
return test_data
except Exception as e:
raise Exception(
"There was an error while loading TEST file. Cannot load it!")
def train_network(self, epoch=1000, lr=0.1,M=0.1):
try:
training_data = self.training_data
start = time.time()
print "Training network in progress"
bar = progressbar.ProgressBar(maxval=epoch, widgets=[progressbar.Bar(
'=', '[', ']'), ' ', progressbar.Percentage()])
bar.start()
for i in range(epoch):
self.nn.train(training_data, 1, lr,M)
bar.update(i + 1)
bar.finish()
elapsed_time = time.time() - start
print "Epoch: {0}, Time elapsed: {1}".format(epoch, elapsed_time)
except Exception as e:
print "Unexpected error:", e
else:
return True
def save_network(self, path="saves/nwstatus/"):
try:
dt = datetime.datetime.now()
history_path = path + "old/"
latest_path = path + "latest/"
if not os.path.exists(path):
os.mkdir(path)
if not os.path.exists(history_path):
os.mkdir(history_path)
if not os.path.exists(latest_path):
os.mkdir(latest_path)
# store current status in a HISTORY folder called OLD that stores all
# of the past training data
fwi_old = history_path + self.gen_filename_dtnow("wi", dtnow=dt)
fwo_old = history_path + self.gen_filename_dtnow("wo", dtnow=dt)
np.savetxt(fwi_old, self.nn.wi)
np.savetxt(fwo_old, self.nn.wo)
# store the current status in LATEST folder - load function will load
# files from that directory
fnn_size = np.array([self.ni, self.nh, self.no])
fnn_new = latest_path + self.gen_filename("nsize")
np.savetxt(fnn_new, fnn_size)
fwi_new = latest_path + self.gen_filename("wi")
fwo_new = latest_path + self.gen_filename("wo")
np.savetxt(fwi_new, self.nn.wi)
np.savetxt(fwo_new, self.nn.wo)
except Exception as e:
print "Unexpected error:", e
else:
print "Successfully saved network status!. See them on: " + path
return True
def load_network(self, path="saves/nwstatus/latest/"):
try:
# TODO: In case of using __init__; consider it handling in the init_network method. So else would be removed, then ex returns false then according to the result call init in super method.
# loads the newest save files from saves/nwstatus/latest/
if os.path.exists(path + "wi.txt") and os.path.exists(path + "wo.txt") and os.path.exists(path + "nsize.txt"):
ni, nh, no = np.loadtxt(fname=path + "nsize.txt")
if [ni, nh, no] != [self.ni, self.nh, self.no]:
raise Exception(
"Load file dimensions DOES NOT match with the current neural network dimensions.")
# TODO: Check the size of save data if not equal init randomly
# compare loadedtxt sizes with the sizes that get_training_data
# func. provides
print "Save files found: " + path + "wi & wo.txt"
self.nn.wi = np.loadtxt(fname=path + "wi.txt")
self.nn.wo = np.loadtxt(fname=path + "wo.txt")
print "Successfully loaded network status from saves/nwstatus/latest."
return True
else:
raise Exception("Save file(s) missing.")
except Exception as e:
print "Unexpected error: ", e
return False
def clear(self):
pass
def print_nn(self):
print "**Printing network features**"
print "Ninp: {0}, Nhid: {1}, Nout: {2}".format(self.nn.ni, self.nn.nh, self.nn.no)
print "Input Weights:\n{0}".format(self.nn.wi)
print "Output Weights:\n{0}".format(self.nn.wo)
print "Network status: {0}".format(self.nwstatus)
def greater(self, val, limit):
if val >= limit:
return 1
else:
return 0
def threshold(self, arr, limit=0.5):
result = [self.greater(i, limit) for i in arr]
return result
def gen_filename_dtnow(self, filename="file", ext="txt", dtnow=datetime.datetime.now()):
dt = dtnow
res = str(dt).replace(':', '-').\
replace(' ', '_').replace('.', '-') + \
"_" + filename + "." + str(ext)
return res
def gen_filename(self, filename="file", ext="txt"):
res = filename + "." + ext
return res
if __name__ == '__main__':
wrp = WrapperBPNN()
wrp.train_network(epoch=100000,lr=0.2,M=0.1)
wrp.test_network(wrp.testing_data)
wrp.save_network()
# print wrp.training_data