-
-
Notifications
You must be signed in to change notification settings - Fork 31.5k
/
Copy pathperf_jit_trampoline.c
617 lines (528 loc) · 18.9 KB
/
perf_jit_trampoline.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#include "Python.h"
#include "pycore_ceval.h" // _PyPerf_Callbacks
#include "pycore_frame.h"
#include "pycore_interp.h"
#include "pycore_runtime.h" // _PyRuntime
#ifdef PY_HAVE_PERF_TRAMPOLINE
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h> // mmap()
#include <sys/types.h>
#include <unistd.h> // sysconf()
#include <sys/time.h> // gettimeofday()
#include <sys/syscall.h>
// ----------------------------------
// Perf jitdump API
// ----------------------------------
typedef struct {
FILE* perf_map;
PyThread_type_lock map_lock;
void* mapped_buffer;
size_t mapped_size;
int code_id;
} PerfMapJitState;
static PerfMapJitState perf_jit_map_state;
/*
Usually the binary and libraries are mapped in separate region like below:
address ->
--+---------------------+--//--+---------------------+--
| .text | .data | ... | | .text | .data | ... |
--+---------------------+--//--+---------------------+--
myprog libc.so
So it'd be easy and straight-forward to find a mapped binary or library from an
address.
But for JIT code, the code arena only cares about the code section. But the
resulting DSOs (which is generated by perf inject -j) contain ELF headers and
unwind info too. Then it'd generate following address space with synthesized
MMAP events. Let's say it has a sample between address B and C.
sample
|
address -> A B v C
---------------------------------------------------------------------------------------------------
/tmp/jitted-PID-0.so | (headers) | .text | unwind info |
/tmp/jitted-PID-1.so | (headers) | .text | unwind info |
/tmp/jitted-PID-2.so | (headers) | .text | unwind info |
...
---------------------------------------------------------------------------------------------------
If it only maps the .text section, it'd find the jitted-PID-1.so but cannot see
the unwind info. If it maps both .text section and unwind sections, the sample
could be mapped to either jitted-PID-0.so or jitted-PID-1.so and it's confusing
which one is right. So to make perf happy we have non-overlapping ranges for each
DSO:
address ->
-------------------------------------------------------------------------------------------------------
/tmp/jitted-PID-0.so | (headers) | .text | unwind info |
/tmp/jitted-PID-1.so | (headers) | .text | unwind info |
/tmp/jitted-PID-2.so | (headers) | .text | unwind info |
...
-------------------------------------------------------------------------------------------------------
As the trampolines are constant, we add a constant padding but in general the padding needs to have the
size of the unwind info rounded to 16 bytes. In general, for our trampolines this is 0x50
*/
#define PERF_JIT_CODE_PADDING 0x100
#define trampoline_api _PyRuntime.ceval.perf.trampoline_api
typedef uint64_t uword;
typedef const char* CodeComments;
#define Pd "d"
#define MB (1024 * 1024)
#define EM_386 3
#define EM_X86_64 62
#define EM_ARM 40
#define EM_AARCH64 183
#define EM_RISCV 243
#define TARGET_ARCH_IA32 0
#define TARGET_ARCH_X64 0
#define TARGET_ARCH_ARM 0
#define TARGET_ARCH_ARM64 0
#define TARGET_ARCH_RISCV32 0
#define TARGET_ARCH_RISCV64 0
#define FLAG_generate_perf_jitdump 0
#define FLAG_write_protect_code 0
#define FLAG_write_protect_vm_isolate 0
#define FLAG_code_comments 0
#define UNREACHABLE()
static uword GetElfMachineArchitecture(void) {
#if TARGET_ARCH_IA32
return EM_386;
#elif TARGET_ARCH_X64
return EM_X86_64;
#elif TARGET_ARCH_ARM
return EM_ARM;
#elif TARGET_ARCH_ARM64
return EM_AARCH64;
#elif TARGET_ARCH_RISCV32 || TARGET_ARCH_RISCV64
return EM_RISCV;
#else
UNREACHABLE();
return 0;
#endif
}
typedef struct {
uint32_t magic;
uint32_t version;
uint32_t size;
uint32_t elf_mach_target;
uint32_t reserved;
uint32_t process_id;
uint64_t time_stamp;
uint64_t flags;
} Header;
enum PerfEvent {
PerfLoad = 0,
PerfMove = 1,
PerfDebugInfo = 2,
PerfClose = 3,
PerfUnwindingInfo = 4
};
struct BaseEvent {
uint32_t event;
uint32_t size;
uint64_t time_stamp;
};
typedef struct {
struct BaseEvent base;
uint32_t process_id;
uint32_t thread_id;
uint64_t vma;
uint64_t code_address;
uint64_t code_size;
uint64_t code_id;
} CodeLoadEvent;
typedef struct {
struct BaseEvent base;
uint64_t unwind_data_size;
uint64_t eh_frame_hdr_size;
uint64_t mapped_size;
} CodeUnwindingInfoEvent;
static const intptr_t nanoseconds_per_second = 1000000000;
// Dwarf encoding constants
static const uint8_t DwarfUData4 = 0x03;
static const uint8_t DwarfSData4 = 0x0b;
static const uint8_t DwarfPcRel = 0x10;
static const uint8_t DwarfDataRel = 0x30;
// static uint8_t DwarfOmit = 0xff;
typedef struct {
unsigned char version;
unsigned char eh_frame_ptr_enc;
unsigned char fde_count_enc;
unsigned char table_enc;
int32_t eh_frame_ptr;
int32_t eh_fde_count;
int32_t from;
int32_t to;
} EhFrameHeader;
static int64_t get_current_monotonic_ticks(void) {
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) {
UNREACHABLE();
return 0;
}
// Convert to nanoseconds.
int64_t result = ts.tv_sec;
result *= nanoseconds_per_second;
result += ts.tv_nsec;
return result;
}
static int64_t get_current_time_microseconds(void) {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) {
UNREACHABLE();
return 0;
}
return ((int64_t)(tv.tv_sec) * 1000000) + tv.tv_usec;
}
static size_t round_up(int64_t value, int64_t multiple) {
if (multiple == 0) {
// Avoid division by zero
return value;
}
int64_t remainder = value % multiple;
if (remainder == 0) {
// Value is already a multiple of 'multiple'
return value;
}
// Calculate the difference to the next multiple
int64_t difference = multiple - remainder;
// Add the difference to the value
int64_t rounded_up_value = value + difference;
return rounded_up_value;
}
static void perf_map_jit_write_fully(const void* buffer, size_t size) {
FILE* out_file = perf_jit_map_state.perf_map;
const char* ptr = (const char*)(buffer);
while (size > 0) {
const size_t written = fwrite(ptr, 1, size, out_file);
if (written == 0) {
UNREACHABLE();
break;
}
size -= written;
ptr += written;
}
}
static void perf_map_jit_write_header(int pid, FILE* out_file) {
Header header;
header.magic = 0x4A695444;
header.version = 1;
header.size = sizeof(Header);
header.elf_mach_target = GetElfMachineArchitecture();
header.process_id = pid;
header.time_stamp = get_current_time_microseconds();
header.flags = 0;
perf_map_jit_write_fully(&header, sizeof(header));
}
static void* perf_map_jit_init(void) {
char filename[100];
int pid = getpid();
snprintf(filename, sizeof(filename) - 1, "/tmp/jit-%d.dump", pid);
const int fd = open(filename, O_CREAT | O_TRUNC | O_RDWR, 0666);
if (fd == -1) {
return NULL;
}
const long page_size = sysconf(_SC_PAGESIZE); // NOLINT(runtime/int)
if (page_size == -1) {
close(fd);
return NULL;
}
// The perf jit interface forces us to map the first page of the file
// to signal that we are using the interface.
perf_jit_map_state.mapped_buffer = mmap(NULL, page_size, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0);
if (perf_jit_map_state.mapped_buffer == NULL) {
close(fd);
return NULL;
}
perf_jit_map_state.mapped_size = page_size;
perf_jit_map_state.perf_map = fdopen(fd, "w+");
if (perf_jit_map_state.perf_map == NULL) {
close(fd);
return NULL;
}
setvbuf(perf_jit_map_state.perf_map, NULL, _IOFBF, 2 * MB);
perf_map_jit_write_header(pid, perf_jit_map_state.perf_map);
perf_jit_map_state.map_lock = PyThread_allocate_lock();
if (perf_jit_map_state.map_lock == NULL) {
fclose(perf_jit_map_state.perf_map);
return NULL;
}
perf_jit_map_state.code_id = 0;
trampoline_api.code_padding = PERF_JIT_CODE_PADDING;
return &perf_jit_map_state;
}
/* DWARF definitions. */
#define DWRF_CIE_VERSION 1
enum {
DWRF_CFA_nop = 0x0,
DWRF_CFA_offset_extended = 0x5,
DWRF_CFA_def_cfa = 0xc,
DWRF_CFA_def_cfa_offset = 0xe,
DWRF_CFA_offset_extended_sf = 0x11,
DWRF_CFA_advance_loc = 0x40,
DWRF_CFA_offset = 0x80
};
enum
{
DWRF_EH_PE_absptr = 0x00,
DWRF_EH_PE_omit = 0xff,
/* FDE data encoding. */
DWRF_EH_PE_uleb128 = 0x01,
DWRF_EH_PE_udata2 = 0x02,
DWRF_EH_PE_udata4 = 0x03,
DWRF_EH_PE_udata8 = 0x04,
DWRF_EH_PE_sleb128 = 0x09,
DWRF_EH_PE_sdata2 = 0x0a,
DWRF_EH_PE_sdata4 = 0x0b,
DWRF_EH_PE_sdata8 = 0x0c,
DWRF_EH_PE_signed = 0x08,
/* FDE flags. */
DWRF_EH_PE_pcrel = 0x10,
DWRF_EH_PE_textrel = 0x20,
DWRF_EH_PE_datarel = 0x30,
DWRF_EH_PE_funcrel = 0x40,
DWRF_EH_PE_aligned = 0x50,
DWRF_EH_PE_indirect = 0x80
};
enum { DWRF_TAG_compile_unit = 0x11 };
enum { DWRF_children_no = 0, DWRF_children_yes = 1 };
enum { DWRF_AT_name = 0x03, DWRF_AT_stmt_list = 0x10, DWRF_AT_low_pc = 0x11, DWRF_AT_high_pc = 0x12 };
enum { DWRF_FORM_addr = 0x01, DWRF_FORM_data4 = 0x06, DWRF_FORM_string = 0x08 };
enum { DWRF_LNS_extended_op = 0, DWRF_LNS_copy = 1, DWRF_LNS_advance_pc = 2, DWRF_LNS_advance_line = 3 };
enum { DWRF_LNE_end_sequence = 1, DWRF_LNE_set_address = 2 };
enum {
#ifdef __x86_64__
/* Yes, the order is strange, but correct. */
DWRF_REG_AX,
DWRF_REG_DX,
DWRF_REG_CX,
DWRF_REG_BX,
DWRF_REG_SI,
DWRF_REG_DI,
DWRF_REG_BP,
DWRF_REG_SP,
DWRF_REG_8,
DWRF_REG_9,
DWRF_REG_10,
DWRF_REG_11,
DWRF_REG_12,
DWRF_REG_13,
DWRF_REG_14,
DWRF_REG_15,
DWRF_REG_RA,
#elif defined(__aarch64__) && defined(__AARCH64EL__) && !defined(__ILP32__)
DWRF_REG_SP = 31,
DWRF_REG_RA = 30,
#else
# error "Unsupported target architecture"
#endif
};
typedef struct ELFObjectContext
{
uint8_t* p; /* Pointer to next address in obj.space. */
uint8_t* startp; /* Pointer to start address in obj.space. */
uint8_t* eh_frame_p; /* Pointer to start address in obj.space. */
uint32_t code_size; /* Size of machine code. */
} ELFObjectContext;
/* Append a null-terminated string. */
static uint32_t
elfctx_append_string(ELFObjectContext* ctx, const char* str)
{
uint8_t* p = ctx->p;
uint32_t ofs = (uint32_t)(p - ctx->startp);
do {
*p++ = (uint8_t)*str;
} while (*str++);
ctx->p = p;
return ofs;
}
/* Append a SLEB128 value. */
static void
elfctx_append_sleb128(ELFObjectContext* ctx, int32_t v)
{
uint8_t* p = ctx->p;
for (; (uint32_t)(v + 0x40) >= 0x80; v >>= 7) {
*p++ = (uint8_t)((v & 0x7f) | 0x80);
}
*p++ = (uint8_t)(v & 0x7f);
ctx->p = p;
}
/* Append a ULEB128 to buffer. */
static void
elfctx_append_uleb128(ELFObjectContext* ctx, uint32_t v)
{
uint8_t* p = ctx->p;
for (; v >= 0x80; v >>= 7) {
*p++ = (char)((v & 0x7f) | 0x80);
}
*p++ = (char)v;
ctx->p = p;
}
/* Shortcuts to generate DWARF structures. */
#define DWRF_U8(x) (*p++ = (x))
#define DWRF_I8(x) (*(int8_t*)p = (x), p++)
#define DWRF_U16(x) (*(uint16_t*)p = (x), p += 2)
#define DWRF_U32(x) (*(uint32_t*)p = (x), p += 4)
#define DWRF_ADDR(x) (*(uintptr_t*)p = (x), p += sizeof(uintptr_t))
#define DWRF_UV(x) (ctx->p = p, elfctx_append_uleb128(ctx, (x)), p = ctx->p)
#define DWRF_SV(x) (ctx->p = p, elfctx_append_sleb128(ctx, (x)), p = ctx->p)
#define DWRF_STR(str) (ctx->p = p, elfctx_append_string(ctx, (str)), p = ctx->p)
#define DWRF_ALIGNNOP(s) \
while ((uintptr_t)p & ((s)-1)) { \
*p++ = DWRF_CFA_nop; \
}
#define DWRF_SECTION(name, stmt) \
{ \
uint32_t* szp_##name = (uint32_t*)p; \
p += 4; \
stmt; \
*szp_##name = (uint32_t)((p - (uint8_t*)szp_##name) - 4); \
}
/* Initialize .eh_frame section. */
static void
elf_init_ehframe(ELFObjectContext* ctx)
{
uint8_t* p = ctx->p;
uint8_t* framep = p;
/* Emit DWARF EH CIE. */
DWRF_SECTION(CIE, DWRF_U32(0); /* Offset to CIE itself. */
DWRF_U8(DWRF_CIE_VERSION);
DWRF_STR("zR"); /* Augmentation. */
DWRF_UV(1); /* Code alignment factor. */
DWRF_SV(-(int64_t)sizeof(uintptr_t)); /* Data alignment factor. */
DWRF_U8(DWRF_REG_RA); /* Return address register. */
DWRF_UV(1);
DWRF_U8(DWRF_EH_PE_pcrel | DWRF_EH_PE_sdata4); /* Augmentation data. */
DWRF_U8(DWRF_CFA_def_cfa); DWRF_UV(DWRF_REG_SP); DWRF_UV(sizeof(uintptr_t));
DWRF_U8(DWRF_CFA_offset|DWRF_REG_RA); DWRF_UV(1);
DWRF_ALIGNNOP(sizeof(uintptr_t));
)
ctx->eh_frame_p = p;
/* Emit DWARF EH FDE. */
DWRF_SECTION(FDE, DWRF_U32((uint32_t)(p - framep)); /* Offset to CIE. */
DWRF_U32(-0x30); /* Machine code offset relative to .text. */
DWRF_U32(ctx->code_size); /* Machine code length. */
DWRF_U8(0); /* Augmentation data. */
/* Registers saved in CFRAME. */
#ifdef __x86_64__
DWRF_U8(DWRF_CFA_advance_loc | 4);
DWRF_U8(DWRF_CFA_def_cfa_offset); DWRF_UV(16);
DWRF_U8(DWRF_CFA_advance_loc | 6);
DWRF_U8(DWRF_CFA_def_cfa_offset); DWRF_UV(8);
/* Extra registers saved for JIT-compiled code. */
#elif defined(__aarch64__) && defined(__AARCH64EL__) && !defined(__ILP32__)
DWRF_U8(DWRF_CFA_advance_loc | 1);
DWRF_U8(DWRF_CFA_def_cfa_offset); DWRF_UV(16);
DWRF_U8(DWRF_CFA_offset | 29); DWRF_UV(2);
DWRF_U8(DWRF_CFA_offset | 30); DWRF_UV(1);
DWRF_U8(DWRF_CFA_advance_loc | 3);
DWRF_U8(DWRF_CFA_offset | -(64 - 29));
DWRF_U8(DWRF_CFA_offset | -(64 - 30));
DWRF_U8(DWRF_CFA_def_cfa_offset);
DWRF_UV(0);
#else
# error "Unsupported target architecture"
#endif
DWRF_ALIGNNOP(sizeof(uintptr_t));)
ctx->p = p;
}
static void perf_map_jit_write_entry(void *state, const void *code_addr,
unsigned int code_size, PyCodeObject *co)
{
if (perf_jit_map_state.perf_map == NULL) {
void* ret = perf_map_jit_init();
if(ret == NULL){
return;
}
}
const char *entry = "";
if (co->co_qualname != NULL) {
entry = PyUnicode_AsUTF8(co->co_qualname);
}
const char *filename = "";
if (co->co_filename != NULL) {
filename = PyUnicode_AsUTF8(co->co_filename);
}
size_t perf_map_entry_size = snprintf(NULL, 0, "py::%s:%s", entry, filename) + 1;
char* perf_map_entry = (char*) PyMem_RawMalloc(perf_map_entry_size);
if (perf_map_entry == NULL) {
return;
}
snprintf(perf_map_entry, perf_map_entry_size, "py::%s:%s", entry, filename);
const size_t name_length = strlen(perf_map_entry);
uword base = (uword)code_addr;
uword size = code_size;
// Write the code unwinding info event.
// Create unwinding information (eh frame)
ELFObjectContext ctx;
char buffer[1024];
ctx.code_size = code_size;
ctx.startp = ctx.p = (uint8_t*)buffer;
elf_init_ehframe(&ctx);
int eh_frame_size = ctx.p - ctx.startp;
// Populate the unwind info event for perf
CodeUnwindingInfoEvent ev2;
ev2.base.event = PerfUnwindingInfo;
ev2.base.time_stamp = get_current_monotonic_ticks();
ev2.unwind_data_size = sizeof(EhFrameHeader) + eh_frame_size;
// Ensure we have enough space between DSOs when perf maps them
assert(ev2.unwind_data_size <= PERF_JIT_CODE_PADDING);
ev2.eh_frame_hdr_size = sizeof(EhFrameHeader);
ev2.mapped_size = round_up(ev2.unwind_data_size, 16);
int content_size = sizeof(ev2) + sizeof(EhFrameHeader) + eh_frame_size;
int padding_size = round_up(content_size, 8) - content_size;
ev2.base.size = content_size + padding_size;
perf_map_jit_write_fully(&ev2, sizeof(ev2));
// Populate the eh Frame header
EhFrameHeader f;
f.version = 1;
f.eh_frame_ptr_enc = DwarfSData4 | DwarfPcRel;
f.fde_count_enc = DwarfUData4;
f.table_enc = DwarfSData4 | DwarfDataRel;
f.eh_frame_ptr = -(eh_frame_size + 4 * sizeof(unsigned char));
f.eh_fde_count = 1;
f.from = -(round_up(code_size, 8) + eh_frame_size);
int cie_size = ctx.eh_frame_p - ctx.startp;
f.to = -(eh_frame_size - cie_size);
perf_map_jit_write_fully(ctx.startp, eh_frame_size);
perf_map_jit_write_fully(&f, sizeof(f));
char padding_bytes[] = "\0\0\0\0\0\0\0\0";
perf_map_jit_write_fully(&padding_bytes, padding_size);
// Write the code load event.
CodeLoadEvent ev;
ev.base.event = PerfLoad;
ev.base.size = sizeof(ev) + (name_length+1) + size;
ev.base.time_stamp = get_current_monotonic_ticks();
ev.process_id = getpid();
ev.thread_id = syscall(SYS_gettid);
ev.vma = base;
ev.code_address = base;
ev.code_size = size;
perf_jit_map_state.code_id += 1;
ev.code_id = perf_jit_map_state.code_id;
perf_map_jit_write_fully(&ev, sizeof(ev));
perf_map_jit_write_fully(perf_map_entry, name_length+1);
perf_map_jit_write_fully((void*)(base), size);
return;
}
static int perf_map_jit_fini(void* state) {
if (perf_jit_map_state.perf_map != NULL) {
// close the file
PyThread_acquire_lock(perf_jit_map_state.map_lock, 1);
fclose(perf_jit_map_state.perf_map);
PyThread_release_lock(perf_jit_map_state.map_lock);
// clean up the lock and state
PyThread_free_lock(perf_jit_map_state.map_lock);
perf_jit_map_state.perf_map = NULL;
}
if (perf_jit_map_state.mapped_buffer != NULL) {
munmap(perf_jit_map_state.mapped_buffer, perf_jit_map_state.mapped_size);
}
trampoline_api.state = NULL;
return 0;
}
_PyPerf_Callbacks _Py_perfmap_jit_callbacks = {
&perf_map_jit_init,
&perf_map_jit_write_entry,
&perf_map_jit_fini,
};
#endif