-
Notifications
You must be signed in to change notification settings - Fork 521
/
GConvTest.cc
645 lines (572 loc) · 22.8 KB
/
GConvTest.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <algorithm>
#include <chrono>
#include <cmath>
#include <random>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
#include <gtest/gtest.h>
#include "./QuantizationHelpers.h"
#include "./TestUtils.h"
#include "bench/BenchUtils.h"
#include "fbgemm/Fbgemm.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
vector<matrix_op_t> transposeVals{
matrix_op_t::NoTranspose,
matrix_op_t::Transpose};
vector<QuantizationGranularity> qGranularityVals{
QuantizationGranularity::TENSOR,
QuantizationGranularity::GROUP,
QuantizationGranularity::OUT_CHANNEL};
namespace {
// class fbgemmGConvAcc32Test
// : public testing::TestWithParam<tuple<matrix_op_t, matrix_op_t>> {};
class fbgemmGConvAcc32WithQuantGranularityTest
: public testing::TestWithParam<tuple<
matrix_op_t,
matrix_op_t,
QuantizationGranularity,
bool,
bool>> {};
class fbgemmGConvPackTest : public testing::TestWithParam<matrix_op_t> {};
}; // namespace
// INSTANTIATE_TEST_CASE_P(
// InstantiationName,
// fbgemmGConvAcc32Test,
// ::testing::Combine(
// ::testing::Values(matrix_op_t::NoTranspose),
// ::testing::ValuesIn(transposeVals)));
INSTANTIATE_TEST_CASE_P(
InstantiationName,
fbgemmGConvAcc32WithQuantGranularityTest,
::testing::Combine(
::testing::Values(matrix_op_t::NoTranspose),
::testing::ValuesIn(transposeVals),
::testing::ValuesIn(qGranularityVals),
::testing::Bool(), // A symmetric
::testing::Bool())); // B symmetric
INSTANTIATE_TEST_CASE_P(
InstantiationName,
fbgemmGConvPackTest,
::testing::ValuesIn(transposeVals));
/**
* @brief 3D Shapes for unit test.
*/
template <int SPATIAL_DIM>
static typename std::enable_if<SPATIAL_DIM == 3, vector<conv_param_t<3>>>::type
GetShapes_() {
// clang-format off
vector<conv_param_t<3>> shapes = {
// MB, IC, OC, {IT, IH, IW}, G, {KT, KH, KW},
// {stride_t, stride_h, stride_w}, {pad_p, pad_t, pad_l,
// pad_n, pad_b, pad_r}
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 8, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 4, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 2, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 4, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 2, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 5}, 1, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {4, 4, 4}, 8, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {4, 4, 4}, 4, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {4, 4, 4}, 2, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {4, 4, 4}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {6, 6, 6}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {6, 6, 6}, 4, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {6, 6, 6}, 2, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {6, 6, 6}, 1, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
// batch size > 1
conv_param_t<3>(2, 16, 16, {4, 4, 4}, 8, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(2, 16, 16, {4, 4, 4}, 4, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(2, 16, 16, {4, 4, 4}, 2, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(2, 16, 16, {4, 4, 4}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(2, 16, 16, {6, 6, 6}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(2, 16, 16, {6, 6, 6}, 4, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(2, 16, 16, {6, 6, 6}, 2, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(2, 16, 16, {6, 6, 6}, 1, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 4, 4}, 8, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 4, 4}, 4, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 4, 4}, 2, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 4, 4}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 4, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 2, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 1, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
// unequal stride
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 8, {3, 3, 3},
{1, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 4, {3, 3, 3},
{1, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 2, {3, 3, 3},
{1, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {1, 6, 6}, 1, {3, 3, 3},
{1, 2, 2}, {1, 1, 1, 1, 1, 1}),
// Small H and W corner cases
conv_param_t<3>(1, 16, 16, {5, 5, 2}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 2, 5}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 1}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 1, 5}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 6}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 6, 5}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 5, 3}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 3, 5}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(1, 16, 16, {5, 3, 3}, 8, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
};
return shapes;
// clang-format off
}
/**
* @brief 2D Shapes for unit test.
*/
template <int SPATIAL_DIM = 2>
static typename std::enable_if<SPATIAL_DIM == 2, vector<conv_param_t<2>>>::type
GetShapes_() {
vector<conv_param_t<>> shapes = {
// MB, IC, OC, {IH, IW}, G, {KH, KW}, {stride_h, stride_w},
// {pad_t, pad_l, pad_b, pad_r}
conv_param_t<>(1, 16, 16, {5, 5}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 5}, 4, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 5}, 2, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 5}, 1, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 5}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 5}, 4, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 5}, 2, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 5}, 1, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 32, 32, {3, 3}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 32, 32, {4, 4}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 32, 32, {3, 5}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 32, 32, {5, 3}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// fix from 8 to 16 to address G_together > G for avx512
conv_param_t<>(1, 16, 16, {5, 5}, 2, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 128, 128, {56, 48}, 32, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 128, 128, {48, 56}, 32, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// the line below is from resnext101-32x4d
conv_param_t<>(1, 128, 128, {56, 56}, 32, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(2, 128, 128, {56, 56}, 32, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// Small H and W corner cases
conv_param_t<>(1, 16, 16, {5, 2}, 1, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {2, 5}, 1, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 1}, 1, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {1, 5}, 1, {3, 3}, {1, 1}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 6}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {6, 5}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 4}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {4, 5}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {4, 4}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {5, 2}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {2, 2}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
conv_param_t<>(1, 16, 16, {1, 1}, 8, {3, 3}, {2, 2}, {1, 1, 1, 1}),
// The following lines are commented to reduce test time but still valid
// when we want more extensive testings.
// conv_param_t<>(1, 64, 64, {3, 3}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// conv_param_t<>(1, 64, 64, {4, 4}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// conv_param_t<>(1, 64, 64, {3, 5}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// conv_param_t<>(1, 64, 64, {5, 3}, 8, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// conv_param_t<>(1, 16, 16, {5, 5}, 2, {3, 3}, {1, 1}, {1, 1, 1, 1}),
// conv_param_t<>(1, 256, 256, {56, 48}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 256, 256, {48, 56}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 256, 256, {56, 56}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(2, 256, 256, {56, 56}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 128, 128, {3, 3}, 8, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 128, 128, {4, 4}, 8, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 128, 128, {3, 5}, 8, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 128, 128, {5, 3}, 8, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 32, 32, {5, 5}, 2, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 512, 512, {56, 48}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 512, 512, {48, 56}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(1, 512, 512, {56, 56}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
// conv_param_t<>(2, 512, 512, {56, 56}, 32, {3, 3}, {1, 1},
// {1, 1, 1, 1}),
};
return shapes;
}
/**
* @brief Unit test for uint8 activations, int8 weights, and 32-bit
* accumulation. Output processing: requantization -> nothing
*/
template <int SPATIAL_DIM = 2>
void runRequantizeTest(matrix_op_t /* unused */,
matrix_op_t btrans,
QuantizationGranularity q_granularity,
bool a_symmetric, bool b_symmetric) {
vector<conv_param_t<SPATIAL_DIM>> shapes(GetShapes_<SPATIAL_DIM>());
for (auto conv_p : shapes) {
int T = SPATIAL_DIM <= 2 ? 1 : conv_p.K[SPATIAL_DIM - 3];
int R = SPATIAL_DIM == 1 ? 1 : conv_p.K[SPATIAL_DIM - 2];
int S = conv_p.K[SPATIAL_DIM - 1];
int G = conv_p.G;
int OC = conv_p.OC;
int IT = SPATIAL_DIM <= 2 ? 1 : conv_p.IN_DIM[SPATIAL_DIM - 3];
int IH = SPATIAL_DIM == 1 ? 1 : conv_p.IN_DIM[SPATIAL_DIM - 2];
int IW = conv_p.IN_DIM[SPATIAL_DIM - 1];
int OT = SPATIAL_DIM <= 2 ? 1 : conv_p.OUT_DIM[SPATIAL_DIM - 3];
int OH = SPATIAL_DIM == 1 ? 1 : conv_p.OUT_DIM[SPATIAL_DIM - 2];
int OW = conv_p.OUT_DIM[SPATIAL_DIM - 1];
int IC_per_G = conv_p.IC / conv_p.G;
int OC_per_G = conv_p.OC / conv_p.G;
// activations
aligned_vector<uint8_t> Aint8(
conv_p.MB * IT * IH *IW * conv_p.IC, 0);
// weights
// when btrans == Transpose, the weight matrix is
// in layout G K/G (T R S C/G) instead of G (T R S C/G) K/G
aligned_vector<int8_t> Bint8(T * R * S * G * IC_per_G * OC_per_G, 0);
aligned_vector<int8_t> Bint8_tr(Bint8.size(), 0);
aligned_vector<int32_t> Cint32_ref(conv_p.MB *OT *OH * OW * OC, 0);
aligned_vector<int32_t> Cint32_fb(Cint32_ref.size(), 0);
aligned_vector<uint8_t> Cint8_ref(Cint32_ref.size(), 0);
aligned_vector<uint8_t> Cint8_fb(Cint32_ref.size(), 0);
randFill<uint8_t>(Aint8, 0, 5);
int32_t Aint8_zero_point = a_symmetric ? 0 : 4;
randFill<int8_t>(Bint8, -4, 4);
// computing column offset
vector<int32_t> col_offsets(G * OC_per_G);
int ncols_per_quant_group = G * OC_per_G;
if (q_granularity == QuantizationGranularity::GROUP) {
ncols_per_quant_group = OC_per_G;
} else if (q_granularity == QuantizationGranularity::OUT_CHANNEL) {
ncols_per_quant_group = 1;
}
aligned_vector<int32_t> Bint8_zero_point(
G * OC_per_G / ncols_per_quant_group);
if (b_symmetric) {
randFill(Bint8_zero_point, 0, 0);
} else {
randFill(Bint8_zero_point, -3, -1);
}
// matrix dimensions after im2col for each GEMM.
// For each group, there is one GEMM of the following dimensions
int MDim = conv_p.MB * OT * OH * OW;
int NDim = OC_per_G;
int KDim = T * R * S * IC_per_G;
vector<uint8_t> Aint8_im2col(MDim * KDim * G);
im2col_ref(conv_p, Aint8.data(), Aint8_zero_point, Aint8_im2col.data());
vector<int32_t> row_offsets(MDim);
aligned_vector<float> C_multiplier(Bint8_zero_point.size());
randFill(C_multiplier, 0.1234f / 2, 0.1234f * 3 / 2);
int32_t C_zero_pt = 5;
// reference implementation
// conv_ref expects weights to be in G (T R S C/G) K/G
int8_t* rightBData = Bint8.data();
if (btrans == matrix_op_t::Transpose) {
transposeConvWeights(conv_p, Bint8.data(), Bint8_tr.data());
rightBData = Bint8_tr.data();
}
for (int g = 0; g < G; ++g) {
col_offsets_with_zero_pt_s8acc32_ref(
R * S * IC_per_G,
OC_per_G,
OC_per_G,
rightBData + g * R * S * IC_per_G * OC_per_G,
Bint8_zero_point.data() + g * OC_per_G / ncols_per_quant_group,
col_offsets.data() + g * OC_per_G,
ncols_per_quant_group);
}
conv_ref(
conv_p, Aint8.data(), Aint8_zero_point, rightBData, Cint32_ref.data());
for (int g = 0; g < G; ++g) {
row_offsets_u8acc32_ref(
MDim,
KDim,
KDim * G,
Aint8_im2col.data() + g * KDim,
row_offsets.data());
requantize_u8acc32_ref(
MDim,
NDim,
G * NDim,
Cint32_ref.data() + g * NDim,
Cint8_ref.data() + g * NDim,
C_multiplier.data() + g * NDim / ncols_per_quant_group,
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data() + g * NDim / ncols_per_quant_group,
row_offsets.data(),
col_offsets.data() + g * NDim,
nullptr,
ncols_per_quant_group);
}
PackWeightMatrixForGConv<int8_t, int32_t, SPATIAL_DIM> packedWeights(
btrans, conv_p, Bint8.data(), nullptr);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
vector<int32_t> row_offset_buf(rowOffsetBufferSizeGConv(conv_p));
DoNothing<> doNothingObj{};
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
if (q_granularity == QuantizationGranularity::TENSOR) {
ReQuantizeOutput<false, QuantizationGranularity::TENSOR> reqObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
Bint8_zero_point[0] ? row_offset_buf.data() : nullptr,
col_offsets.data(),
nullptr,
G * NDim,
G);
fbgemmGroupwiseConv(
conv_p,
Aint8.data(),
Aint8_zero_point,
Bint8_zero_point[0] ? row_offset_buf.data() : nullptr,
packedWeights,
Cint8_fb.data(),
Cint32_fb.data(),
reqObj,
tid,
num_threads);
} else if (q_granularity == QuantizationGranularity::GROUP) {
ReQuantizeOutput<false, QuantizationGranularity::GROUP> reqObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
row_offset_buf.data(),
col_offsets.data(),
nullptr,
G * NDim,
G);
fbgemmGroupwiseConv(
conv_p,
Aint8.data(),
Aint8_zero_point,
row_offset_buf.data(),
packedWeights,
Cint8_fb.data(),
Cint32_fb.data(),
reqObj,
tid,
num_threads);
} else {
ReQuantizeOutput<false, QuantizationGranularity::OUT_CHANNEL> reqObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
row_offset_buf.data(),
col_offsets.data(),
nullptr,
G * NDim,
G);
fbgemmGroupwiseConv(
conv_p,
Aint8.data(),
Aint8_zero_point,
row_offset_buf.data(),
packedWeights,
Cint8_fb.data(),
Cint32_fb.data(),
reqObj,
tid,
num_threads);
}
} // omp parallel
compare_validate_buffers(
Cint8_ref.data(),
Cint8_fb.data(),
MDim,
NDim * G,
NDim * G,
static_cast<uint8_t>(0));
} // for each shape
}
TEST_P(fbgemmGConvAcc32WithQuantGranularityTest, requantizeTest) {
matrix_op_t atrans, btrans;
QuantizationGranularity q_granularity;
bool a_symmetric, b_symmetric;
tie(atrans, btrans, q_granularity, a_symmetric, b_symmetric) = GetParam();
runRequantizeTest<2>(atrans, btrans, q_granularity, a_symmetric, b_symmetric);
runRequantizeTest<3>(atrans, btrans, q_granularity, a_symmetric, b_symmetric);
}
/**
* @brief Unit test for uint8 activations, int8 weights, and 32-bit
* accumulation. Output processing: nothing
*/
/*
TEST_P(fbgemmGConvAcc32Test, NoRequantizeTest) {
vector<conv_param_t<>> shapes(GetShapes_());
matrix_op_t atrans, btrans;
tie(atrans, btrans) = GetParam();
for (auto conv_p : shapes) {
int R = conv_p.K[0];
int S = conv_p.K[1];
int G = conv_p.G;
int OC = conv_p.OC;
int OH = conv_p.OUT_DIM[0];
int OW = conv_p.OUT_DIM[1];
int IC_per_G = conv_p.IC / conv_p.G;
int OC_per_G = conv_p.OC / conv_p.G;
// activations
aligned_vector<uint8_t> Aint8(
conv_p.MB * conv_p.IN_DIM[0] * conv_p.IN_DIM[1] * conv_p.IC, 0);
// weights
// when btrans == Transpose, the weight matrix is in layout G K/G (R S C/G)
// instead of G (R S C/G) K/G
aligned_vector<int8_t> Bint8(R * S * conv_p.G * IC_per_G * OC_per_G, 0);
aligned_vector<int8_t> Bint8_tr(R * S * conv_p.G * IC_per_G * OC_per_G, 0);
aligned_vector<int32_t> Cint32_ref(conv_p.MB * OH * OW * OC, 0);
aligned_vector<int32_t> Cint32_fb(Cint32_ref.size(), 0);
randFill<uint8_t>(Aint8, 0, 5);
int32_t Aint8_zero_point = 4;
randFill<int8_t>(Bint8, -4, 4);
// matrix dimensions after im2col for each GEMM.
// For each group, there is one GEMM of the following dimensions
int MDim = conv_p.MB * OH * OW;
int NDim = OC_per_G;
// int KDim = R * S * IC_per_G;
// reference implementation
// conv_ref expects weights to be in G (R S C/G) K/G
int8_t* rightBData = Bint8.data();
if (btrans == matrix_op_t::Transpose) {
transposeConvWeights(conv_p, Bint8.data(), Bint8_tr.data());
rightBData = Bint8_tr.data();
}
conv_ref(
conv_p, Aint8.data(), Aint8_zero_point, rightBData, Cint32_ref.data());
PackWeightMatrixForGConv<int8_t> packedWeights(
btrans, conv_p, Bint8.data(), nullptr);
// TODO: Uncomment once we support multiple threads in fbgemmGroupwiseConv
// #ifdef _OPENMP
// #pragma omp parallel
// #endif
{
vector<int32_t> row_offset_buf(rowOffsetBufferSizeGConv(conv_p));
DoNothing<int32_t, int32_t> doNothingObj{};
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
fbgemmGroupwiseConv(
conv_p,
Aint8.data(),
Aint8_zero_point,
row_offset_buf.data(),
packedWeights,
Cint32_fb.data(),
Cint32_fb.data(),
doNothingObj,
tid,
num_threads);
}
compare_validate_buffers(
Cint32_ref.data(),
Cint32_fb.data(),
MDim,
NDim * G,
NDim * G,
static_cast<int32_t>(0));
} // for each shape
}
*/
template <int SPATIAL_DIM = 2>
void runPackUnpackTest(matrix_op_t btrans) {
vector<conv_param_t<SPATIAL_DIM>> shapes(GetShapes_<SPATIAL_DIM>());
for (auto conv_p : shapes) {
int T = SPATIAL_DIM <= 2 ? 1 : conv_p.K[SPATIAL_DIM - 3];
int R = SPATIAL_DIM == 1 ? 1 : conv_p.K[SPATIAL_DIM - 2];
int S = conv_p.K[SPATIAL_DIM - 1];
int IC_per_G = conv_p.IC / conv_p.G;
int OC_per_G = conv_p.OC / conv_p.G;
// Weights -- test the packing/unpacking of only the weights
// when btrans == Transpose, the weight matrix is in
// layout G K/G (T R S C/G) instead of G (T R S C/G) K/G
int weight_len = T * R * S * conv_p.G * IC_per_G * OC_per_G;
aligned_vector<int8_t> Bint8(weight_len, 0);
// Random fill the weights
randFill<int8_t>(Bint8, -4, 4);
// Instantiate the object
PackWeightMatrixForGConv<int8_t, int32_t, SPATIAL_DIM> packedWeights(
btrans, conv_p, Bint8.data(), nullptr);
// Setup a buffer to get pack -> unpacked results
aligned_vector<int8_t> unpack_buf(weight_len, 0);
// START Actual pack-unpack operations
// Perform packing first. This should populate pdata_ of packedWeights
packedWeights.pack();
// Next perform unpacking
packedWeights.unpack(unpack_buf.data());
// END actual pack-unpack operations
// Sanity check
for (int i = 0; i < weight_len; ++i) {
EXPECT_EQ(unpack_buf.data()[i], Bint8.data()[i])
<< "Pack/Unpack results differ at index " << i
<< ", Reference: " << static_cast<int>(Bint8.data()[i])
<< ", Pack-Unpacked: " << static_cast<int>(unpack_buf.data()[i]);
}
} // for each shape
}
/**
* @brief Unit test for packing and unpacking the weight tensor
*/
TEST_P(fbgemmGConvPackTest, PackUnpackTest) {
matrix_op_t btrans = GetParam();
runPackUnpackTest<2>(btrans);
runPackUnpackTest<3>(btrans);
}