-
Notifications
You must be signed in to change notification settings - Fork 362
/
Copy pathnotebooks.html
856 lines (666 loc) · 41.3 KB
/
notebooks.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Example notebooks — Torch-TensorRT v1.3.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/collapsible-lists/css/tree_view.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="torch_tensorrt" href="../py_api/torch_tensorrt.html" />
<link rel="prev" title="DLA" href="using_dla.html" />
<!-- Google Analytics -->
<!-- End Google Analytics -->
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
v1.3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getting_started/installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../getting_started/getting_started_with_python_api.html">Using Torch-TensorRT in Python</a></li>
<li class="toctree-l1"><a class="reference internal" href="../getting_started/getting_started_with_cpp_api.html">Using Torch-TensorRT in C++</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="creating_torchscript_module_in_python.html">Creating a TorchScript Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="creating_torchscript_module_in_python.html#working-with-torchscript-in-python">Working with TorchScript in Python</a></li>
<li class="toctree-l1"><a class="reference internal" href="creating_torchscript_module_in_python.html#saving-torchscript-module-to-disk">Saving TorchScript Module to Disk</a></li>
<li class="toctree-l1"><a class="reference internal" href="getting_started_with_fx_path.html">Torch-TensorRT (FX Frontend) User Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="ptq.html">Post Training Quantization (PTQ)</a></li>
<li class="toctree-l1"><a class="reference internal" href="runtime.html">Deploying Torch-TensorRT Programs</a></li>
<li class="toctree-l1"><a class="reference internal" href="serving_torch_tensorrt_with_triton.html">Serving a Torch-TensorRT model with Triton</a></li>
<li class="toctree-l1"><a class="reference internal" href="use_from_pytorch.html">Using Torch-TensorRT Directly From PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="using_dla.html">DLA</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Example notebooks</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API Documenation</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../py_api/torch_tensorrt.html">torch_tensorrt</a></li>
<li class="toctree-l1"><a class="reference internal" href="../py_api/logging.html">torch_tensorrt.logging</a></li>
<li class="toctree-l1"><a class="reference internal" href="../py_api/ptq.html">torch_tensorrt.ptq</a></li>
<li class="toctree-l1"><a class="reference internal" href="../py_api/ts.html">torch_tensorrt.ts</a></li>
<li class="toctree-l1"><a class="reference internal" href="../py_api/fx.html">torch_tensorrt.fx</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">C++ API Documenation</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_api/torch_tensort_cpp.html">Torch-TensorRT C++ API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_api/namespace_torch_tensorrt.html">Namespace torch_tensorrt</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_api/namespace_torch_tensorrt__logging.html">Namespace torch_tensorrt::logging</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_api/namespace_torch_tensorrt__torchscript.html">Namespace torch_tensorrt::torchscript</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_api/namespace_torch_tensorrt__ptq.html">Namespace torch_tensorrt::ptq</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">CLI Documenation</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../cli/torchtrtc.html">torchtrtc</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Contributor Documentation</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../contributors/system_overview.html">System Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../contributors/writing_converters.html">Writing Converters</a></li>
<li class="toctree-l1"><a class="reference internal" href="../contributors/useful_links.html">Useful Links for Torch-TensorRT Development</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Indices</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../indices/supported_ops.html">Operators Supported</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>Example notebooks</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/tutorials/notebooks.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="example-notebooks">
<span id="notebooks"></span><h1>Example notebooks<a class="headerlink" href="#example-notebooks" title="Permalink to this headline">¶</a></h1>
<p>There exists a number of notebooks which cover specific using specific features and models
with Torch-TensorRT</p>
<section id="id1">
<h2>Notebooks<a class="headerlink" href="#id1" title="Permalink to this headline">¶</a></h2>
<section id="compiling-citrinet-with-torch-tensorrt">
<h3>Compiling CitriNet with Torch-TensorRT<a class="headerlink" href="#compiling-citrinet-with-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>Citrinet is an acoustic model used for the speech to text recognition task. It is a version
of QuartzNet that extends ContextNet, utilizing subword encoding (via Word Piece tokenization)
and Squeeze-and-Excitation(SE) mechanism and are therefore smaller than QuartzNet models. CitriNet
models take in audio segments and transcribe them to letter, byte pair, or word piece sequences.</p>
<p>This notebook demonstrates the steps for optimizing a pretrained CitriNet model with Torch-TensorRT,
and running it to test the speedup obtained.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/CitriNet-example.ipynb">Torch-TensorRT Getting Started - CitriNet</a></p></li>
</ul>
</section>
<section id="compiling-efficentnet-with-torch-tensorrt">
<h3>Compiling EfficentNet with Torch-TensorRT<a class="headerlink" href="#compiling-efficentnet-with-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>EfficentNet is a feedforward CNN designed to achieve better performance and accuracy than alternative architectures
by using a “scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient”.</p>
<p>This notebook demonstrates the steps for optimizing a pretrained EfficentNet model with Torch-TensorRT,
and running it to test the speedup obtained.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/EfficientNet-example.ipynb">Torch-TensorRT Getting Started - EfficientNet-B0</a></p></li>
</ul>
</section>
<section id="masked-language-modeling-mlm-with-hugging-face-bert-transformer-accelerated-by-torch-tensorrt">
<h3>Masked Language Modeling (MLM) with Hugging Face BERT Transformer accelerated by Torch-TensorRT<a class="headerlink" href="#masked-language-modeling-mlm-with-hugging-face-bert-transformer-accelerated-by-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>“BERT is a transformer model pretrained on a large corpus of English data in a self-supervised fashion.
This way, the model learns an inner representation of the English language that can then be used to extract
features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train
a standard classifier using the features produced by the BERT model as inputs.” (<a class="reference external" href="https://huggingface.co/bert-base-uncased">https://huggingface.co/bert-base-uncased</a>)</p>
<p>This notebook demonstrates the steps for optimizing a pretrained EfficentNet model with Torch-TensorRT,
and running it to test the speedup obtained.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/Hugging-Face-BERT.ipynb">Masked Language Modeling (MLM) with Hugging Face BERT Transformer</a></p></li>
</ul>
</section>
<section id="serving-a-model-in-c-using-torch-tensorrt">
<h3>Serving a model in C++ using Torch-TensorRT<a class="headerlink" href="#serving-a-model-in-c-using-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>This example shows how you can load a pretrained ResNet-50 model, convert it to a Torch-TensorRT
optimized model (via the Torch-TensorRT Python API), save the model as a torchscript module, and
then finally load and serve the model with the PyTorch C++ API.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/Resnet50-CPP.ipynb">ResNet C++ Serving Example</a></p></li>
</ul>
</section>
<section id="compiling-resnet50-with-torch-tensorrt">
<h3>Compiling ResNet50 with Torch-TensorRT<a class="headerlink" href="#compiling-resnet50-with-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>This notebook demonstrates the steps for compiling a TorchScript module with Torch-TensorRT on a
pretrained ResNet-50 network, and running it to test the speedup obtained.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/Resnet50-example.ipynb">Torch-TensorRT Getting Started - ResNet 50</a></p></li>
</ul>
</section>
<section id="using-dynamic-shapes-with-torch-tensorrt">
<h3>Using Dynamic Shapes with Torch-TensorRT<a class="headerlink" href="#using-dynamic-shapes-with-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>Making use of Dynamic Shaped Tensors in Torch TensorRT is quite simple. Let’s say you are
using the <code class="docutils literal notranslate"><span class="pre">torch_tensorrt.compile(...)</span></code> function to compile a torchscript module. One
of the args in this function in this function is <code class="docutils literal notranslate"><span class="pre">input</span></code>: which defines an input to a
module in terms of expected shape, data type and tensor format: <code class="docutils literal notranslate"><span class="pre">torch_tensorrt.Input.</span></code></p>
<p>For the purposes of this walkthrough we just need three kwargs: <cite>min_shape</cite>, <cite>opt_shape`</cite> and <cite>max_shape</cite>.</p>
<div class="highlight-py notranslate"><div class="highlight"><pre><span></span><span class="n">torch_tensorrt</span><span class="o">.</span><span class="n">Input</span><span class="p">(</span>
<span class="n">min_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="n">opt_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="n">max_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span>
<span class="nb">format</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">channel_last</span>
<span class="p">)</span>
<span class="o">...</span>
</pre></div>
</div>
<p>In this example, we are going to use a simple ResNet model to demonstrate the use of the API.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/dynamic-shapes.ipynb">Torch-TensorRT - Using Dynamic Shapes</a></p></li>
</ul>
</section>
<section id="using-the-fx-frontend-with-torch-tensorrt">
<h3>Using the FX Frontend with Torch-TensorRT<a class="headerlink" href="#using-the-fx-frontend-with-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>The purpose of this example is to demostrate the overall flow of lowering a PyTorch model to TensorRT
conveniently with using FX.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/getting_started_with_fx_path_lower_to_trt.ipynb">Using the FX Frontend with Torch-TensorRT</a></p></li>
</ul>
</section>
<section id="compiling-a-pytorch-model-using-fx-frontend-with-torch-tensorrt">
<h3>Compiling a PyTorch model using FX Frontend with Torch-TensorRT<a class="headerlink" href="#compiling-a-pytorch-model-using-fx-frontend-with-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>The purpose of this example is to demonstrate the overall flow of lowering a PyTorch
model to TensorRT via FX with existing FX based tooling</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/getting_started_with_fx_path_module.ipynb">Compiling a PyTorch model using FX Frontend with Torch-TensorRT</a></p></li>
</ul>
</section>
<section id="compiling-lenet-with-torch-tensorrt">
<h3>Compiling LeNet with Torch-TensorRT<a class="headerlink" href="#compiling-lenet-with-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>This notebook demonstrates the steps for compiling a TorchScript module with Torch-TensorRT on a simple LeNet network.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/lenet-getting-started.ipynb">Torch-TensorRT Getting Started - LeNet</a></p></li>
</ul>
</section>
<section id="accelerate-deep-learning-models-using-quantization-in-torch-tensorrt">
<h3>Accelerate Deep Learning Models using Quantization in Torch-TensorRT<a class="headerlink" href="#accelerate-deep-learning-models-using-quantization-in-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>Model Quantization is a popular way of optimization which reduces the size of models thereby
accelerating inference, also opening up the possibilities of deployments on devices with lower
computation power such as Jetson. Simply put, quantization is a process of mapping input values</p>
<blockquote>
<div><p>from a larger set to output values in a smaller set. In this notebook, we illustrate the workflow
that you can adopt while quantizing a deep learning model in Torch-TensorRT. The notebook takes
you through an example of Mobilenetv2 for a classification task on a subset of Imagenet Dataset
called Imagenette which has 10 classes.</p>
</div></blockquote>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/qat-ptq-workflow.ipynb">Accelerate Deep Learning Models using Quantization in Torch-TensorRT</a></p></li>
</ul>
</section>
<section id="object-detection-with-torch-tensorrt-ssd">
<h3>Object Detection with Torch-TensorRT (SSD)<a class="headerlink" href="#object-detection-with-torch-tensorrt-ssd" title="Permalink to this headline">¶</a></h3>
<p>This notebook demonstrates the steps for compiling a TorchScript module with Torch-TensorRT on a pretrained SSD network, and running it to test the speedup obtained.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/ssd-object-detection-demo.ipynb">Object Detection with Torch-TensorRT (SSD)</a></p></li>
</ul>
</section>
<section id="deploying-quantization-aware-trained-models-in-int8-using-torch-tensorrt">
<h3>Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT<a class="headerlink" href="#deploying-quantization-aware-trained-models-in-int8-using-torch-tensorrt" title="Permalink to this headline">¶</a></h3>
<p>Quantization Aware training (QAT) simulates quantization during training by
quantizing weights and activation layers. This will help to reduce the loss in
accuracy when we convert the network trained in FP32 to INT8 for faster inference.
QAT introduces additional nodes in the graph which will be used to learn the dynamic
ranges of weights and activation layers. In this notebook, we illustrate the following
steps from training to inference of a QAT model in Torch-TensorRT.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/pytorch/TensorRT/blob/master/notebooks/vgg-qat.ipynb">Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT</a></p></li>
</ul>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../py_api/torch_tensorrt.html" class="btn btn-neutral float-right" title="torch_tensorrt" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="using_dla.html" class="btn btn-neutral" title="DLA" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2022, NVIDIA Corporation.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Example notebooks</a><ul>
<li><a class="reference internal" href="#id1">Notebooks</a><ul>
<li><a class="reference internal" href="#compiling-citrinet-with-torch-tensorrt">Compiling CitriNet with Torch-TensorRT</a></li>
<li><a class="reference internal" href="#compiling-efficentnet-with-torch-tensorrt">Compiling EfficentNet with Torch-TensorRT</a></li>
<li><a class="reference internal" href="#masked-language-modeling-mlm-with-hugging-face-bert-transformer-accelerated-by-torch-tensorrt">Masked Language Modeling (MLM) with Hugging Face BERT Transformer accelerated by Torch-TensorRT</a></li>
<li><a class="reference internal" href="#serving-a-model-in-c-using-torch-tensorrt">Serving a model in C++ using Torch-TensorRT</a></li>
<li><a class="reference internal" href="#compiling-resnet50-with-torch-tensorrt">Compiling ResNet50 with Torch-TensorRT</a></li>
<li><a class="reference internal" href="#using-dynamic-shapes-with-torch-tensorrt">Using Dynamic Shapes with Torch-TensorRT</a></li>
<li><a class="reference internal" href="#using-the-fx-frontend-with-torch-tensorrt">Using the FX Frontend with Torch-TensorRT</a></li>
<li><a class="reference internal" href="#compiling-a-pytorch-model-using-fx-frontend-with-torch-tensorrt">Compiling a PyTorch model using FX Frontend with Torch-TensorRT</a></li>
<li><a class="reference internal" href="#compiling-lenet-with-torch-tensorrt">Compiling LeNet with Torch-TensorRT</a></li>
<li><a class="reference internal" href="#accelerate-deep-learning-models-using-quantization-in-torch-tensorrt">Accelerate Deep Learning Models using Quantization in Torch-TensorRT</a></li>
<li><a class="reference internal" href="#object-detection-with-torch-tensorrt-ssd">Object Detection with Torch-TensorRT (SSD)</a></li>
<li><a class="reference internal" href="#deploying-quantization-aware-trained-models-in-int8-using-torch-tensorrt">Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/collapsible-lists/js/CollapsibleLists.compressed.js"></script>
<script src="../_static/collapsible-lists/js/apply-collapsible-lists.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">Stay up to date</li>
<li><a href="https://www.facebook.com/pytorch" target="_blank">Facebook</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank">Twitter</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank">YouTube</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">PyTorch Podcasts</li>
<li><a href="https://open.spotify.com/show/6UzHKeiy368jKfQMKKvJY5" target="_blank">Spotify</a></li>
<li><a href="https://podcasts.apple.com/us/podcast/pytorch-developer-podcast/id1566080008" target="_blank">Apple</a></li>
<li><a href="https://www.google.com/podcasts?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9PQjVGa0lsOA%3D%3D" target="_blank">Google</a></li>
<li><a href="https://music.amazon.com/podcasts/7a4e6f0e-26c2-49e9-a478-41bd244197d0/PyTorch-Developer-Podcast?" target="_blank">Amazon</a></li>
</ul>
</div>
</div>
<div class="privacy-policy">
<ul>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/terms/" target="_blank">Terms</a></li>
<li class="privacy-policy-links">|</li>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/privacy-policy/" target="_blank">Privacy</a></li>
</ul>
</div>
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="www.linuxfoundation.org/policies/">www.linuxfoundation.org/policies/</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="www.lfprojects.org/policies/">www.lfprojects.org/policies/</a>.</p>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="../_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="resources-mobile-menu-title">
Docs
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs/stable/index.html">PyTorch</a>
</li>
<li>
<a href="https://pytorch.org/audio/stable/index.html">torchaudio</a>
</li>
<li>
<a href="https://pytorch.org/text/stable/index.html">torchtext</a>
</li>
<li>
<a href="https://pytorch.org/vision/stable/index.html">torchvision</a>
</li>
<li>
<a href="https://pytorch.org/torcharrow">torcharrow</a>
</li>
<li>
<a href="https://pytorch.org/data">TorchData</a>
</li>
<li>
<a href="https://pytorch.org/torchrec">TorchRec</a>
</li>
<li>
<a href="https://pytorch.org/serve/">TorchServe</a>
</li>
<li>
<a href="https://pytorch.org/torchx/">TorchX</a>
</li>
<li>
<a href="https://pytorch.org/xla">PyTorch on XLA Devices</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
Resources
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/features">About</a>
</li>
<li>
<a href="https://pytorch.org/foundation">PyTorch Foundation</a>
</li>
<li>
<a href="https://pytorch.org/#community-module">Community</a>
</li>
<li>
<a href="https://pytorch.org/community-stories">Community Stories</a>
</li>
<li>
<a href="https://pytorch.org/resources">Developer Resources</a>
</li>
<li>
<a href="https://pytorch.org/events">Events</a>
</li>
<li>
<a href="https://discuss.pytorch.org/">Forums</a>
</li>
<li>
<a href="https://pytorch.org/hub">Models (Beta)</a>
</li>
</ul>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>