-
Notifications
You must be signed in to change notification settings - Fork 509
/
Copy pathadaptive_avg_pool2d.py
47 lines (39 loc) · 1.57 KB
/
adaptive_avg_pool2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import torch
from executorch.backends.example.example_operators.op_base import OpBase
from executorch.backends.example.example_operators.utils import (
_annotate_nodes,
_nodes_are_annotated,
)
def _annotate_mean(partitions, quant_config):
"""
This is what the graph of a simple adaptive_avg_pool2d op looks like:
fn_weight = self.fn_weight
fn_bias = self.fn_bias
permute_copy = torch.ops.aten.permute_copy.default(fn_weight, [1, 0]); fn_weight = None
addmm = torch.ops.aten.addmm.default(fn_bias, arg2_1, permute_copy); fn_bias = arg2_1 = permute_copy = None
"""
print("parititioners: ", partitions)
adaptive_avg_pool2d_node = partitions[0].output_nodes[0]
adaptive_avg_pool2d_node_input = adaptive_avg_pool2d_node.args[0]
print("adaptive_avg_pool2d_node: ", adaptive_avg_pool2d_node)
if _nodes_are_annotated([adaptive_avg_pool2d_node]):
return
_annotate_nodes(
[(adaptive_avg_pool2d_node, adaptive_avg_pool2d_node_input)],
quant_config.input_quant_spec,
input_node=True,
)
_annotate_nodes([(adaptive_avg_pool2d_node,)], quant_config.output_quant_spec)
@dataclass
class AdaptiveAvgPool2dNode(OpBase):
def __init__(self):
super().__init__(
pattern=(torch.nn.AdaptiveAvgPool2d,),
annotate_handle=_annotate_mean,
)