-
Notifications
You must be signed in to change notification settings - Fork 508
/
Copy pathconv_relu.py
49 lines (40 loc) · 1.69 KB
/
conv_relu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import torch
from executorch.backends.example.example_operators.op_base import OpBase
from executorch.backends.example.example_operators.utils import (
_annotate_nodes,
_nodes_are_annotated,
)
def _annotate_conv_relu(partitions, quant_config):
"""
This is what the graph of a simple conv + relu pattern looks like:
l__self___conv_weight = self.L__self___conv_weight
l__self___conv_bias = self.L__self___conv_bias
convolution_default = torch.ops.aten.convolution.default(arg2_1, l__self___conv_weight, l__self___conv_bias, [1, 1], [1, 1], [1, 1], False, [0, 0], 1); arg2_1 = l__self___conv_weight = l__self___conv_bias = None
relu_default = torch.ops.aten.relu.default(convolution_default); convolution_default = None
"""
conv_node = partitions[0].output_nodes[0]
input_node = conv_node.args[0]
relu_node = partitions[1].output_nodes[0]
weight_node = conv_node.args[1]
if _nodes_are_annotated([conv_node, relu_node]):
return
_annotate_nodes(
[(conv_node, input_node)], quant_config.input_quant_spec, input_node=True
)
_annotate_nodes(
[(conv_node, weight_node)], quant_config.weight_quant_spec, input_node=True
)
_annotate_nodes([(relu_node,)], quant_config.output_quant_spec)
@dataclass
class ConvReluNode(OpBase):
def __init__(self):
super().__init__(
pattern=(torch.nn.Conv2d, torch.nn.ReLU),
annotate_handle=_annotate_conv_relu,
)