-
Notifications
You must be signed in to change notification settings - Fork 509
/
Copy pathflatten.py
40 lines (32 loc) · 1.15 KB
/
flatten.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import torch
from executorch.backends.example.example_operators.op_base import OpBase
from executorch.backends.example.example_operators.utils import (
_annotate_nodes,
_nodes_are_annotated,
)
def _annotate_flatten(partitions, quant_config):
"""
This is what the graph of a simple add op looks like:
add_tensor = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
"""
flatten_node = partitions[0].output_nodes[0]
flatten_input = flatten_node.args[0]
if _nodes_are_annotated([flatten_node]):
return
_annotate_nodes(
[(flatten_node, flatten_input)], quant_config.input_quant_spec, input_node=True
)
_annotate_nodes([(flatten_node,)], quant_config.output_quant_spec)
@dataclass
class FlattenNode(OpBase):
def __init__(self):
super().__init__(
pattern=(torch.flatten,),
annotate_handle=_annotate_flatten,
)