-
Notifications
You must be signed in to change notification settings - Fork 508
/
Copy pathNeuronExecutor.cpp
168 lines (137 loc) · 4.82 KB
/
NeuronExecutor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
* Copyright (c) 2024 MediaTek Inc.
*
* Licensed under the BSD License (the "License"); you may not use this file
* except in compliance with the License. See the license file in the root
* directory of this source tree for more details.
*/
#include "NeuronExecutor.h"
#include "NeuronLog.h"
#include "api/NeuronAdapter.h"
#include <string>
#include <vector>
#define RESTORE_DLA_EXTENSION_OPERAND_TYPE 0x0100
#define RESTORE_DLA_EXTENSION_OPERATION_TYPE 0x0000
#define RESTORE_DLA_EXTENSION_NAME "com.mediatek.compiled_network"
namespace executorch {
namespace backends {
namespace neuron {
NeuronExecutor::NeuronExecutor(){};
int NeuronExecutor::LoadFromCompiledNetwork(
const void* buffer,
size_t size,
int inputCount,
int outputCount,
std::string& runtimeOption) {
NeuronModel* model = nullptr;
NeuronCompilation* compilation = nullptr;
NeuronExecution* execution = nullptr;
std::vector<NeuronOperandType> mInputOperand;
std::vector<NeuronOperandType> mOutputOperand;
// ---------------------------Model------------------------------------
int err = NEURON_NO_ERROR;
err |= NeuronModel_create(&model);
CHECK_NO_ERROR(err);
mModel = std::unique_ptr<NeuronModel, NeuronDeleter>(model);
std::vector<uint32_t> input_op_number;
// fake input, the real outputs are loaded by compiled network.
NeuronOperandType fakeInputOperandType{
.type = NEURON_TENSOR_FLOAT32,
.dimensionCount = 0,
.scale = 0.0f,
.zeroPoint = 0,
};
for (int i = 0; i < inputCount; i++) {
mInputOperand.push_back(fakeInputOperandType);
}
for (int i = 0; i < mInputOperand.size(); i++) {
err |= NeuronModel_addOperand(model, &mInputOperand[i]);
input_op_number.emplace_back(i);
}
int32_t operandType = 0;
const uint16_t network_operand_restore_data =
RESTORE_DLA_EXTENSION_OPERAND_TYPE;
const char* extensionRestoreCompiledNetwork = RESTORE_DLA_EXTENSION_NAME;
err |= NeuronModel_getExtensionOperandType(
model,
extensionRestoreCompiledNetwork,
network_operand_restore_data,
&operandType);
CHECK_NO_ERROR(err);
NeuronOperandType extenOperandType{
.type = operandType,
.dimensionCount = 0,
.scale = 0.0f,
.zeroPoint = 0,
};
err |= NeuronModel_addOperand(model, &extenOperandType);
CHECK_NO_ERROR(err);
input_op_number.emplace_back(input_op_number.size());
// fake output, the real outputs are loaded by compiled network.
NeuronOperandType fakeOutputOperandType{
.type = NEURON_TENSOR_FLOAT32,
.dimensionCount = 0,
.scale = 0.0f,
.zeroPoint = 0,
};
for (int i = 0; i < outputCount; i++) {
mOutputOperand.push_back(fakeOutputOperandType);
}
std::vector<uint32_t> output_op_number;
for (int i = 0; i < mOutputOperand.size(); i++) {
err |= NeuronModel_addOperand(model, &mOutputOperand[i]);
output_op_number.emplace_back(i + input_op_number.size());
}
CHECK_NO_ERROR(err);
err |=
NeuronModel_setOperandValue(model, input_op_number.back(), buffer, size);
int32_t operationType = 0;
const uint16_t network_operation_type_restore =
RESTORE_DLA_EXTENSION_OPERATION_TYPE;
err |= NeuronModel_getExtensionOperationType(
model,
extensionRestoreCompiledNetwork,
network_operation_type_restore,
&operationType);
CHECK_NO_ERROR(err);
// Add extension operation
err |= NeuronModel_addOperation(
model,
(NeuronOperationType)operationType,
input_op_number.size(),
input_op_number.data(),
output_op_number.size(),
output_op_number.data());
CHECK_NO_ERROR(err);
// Identify input and output
err |= NeuronModel_identifyInputsAndOutputs(
model,
input_op_number.size() - 1,
input_op_number.data(),
output_op_number.size(),
output_op_number.data());
CHECK_NO_ERROR(err);
err |= NeuronModel_finish(model);
CHECK_NO_ERROR(err);
// ---------------------------Compilation------------------------------------
// err = NeuronCompilation_e(model, &compilation) != NEURON_NO_ERROR;
err = NeuronCompilation_createWithOptions(
model, &compilation, runtimeOption.c_str());
CHECK_NO_ERROR(err);
mCompilation = std::unique_ptr<NeuronCompilation, NeuronDeleter>(compilation);
err |=
NeuronCompilation_setPreference(compilation, NEURON_PREFER_TURBO_BOOST);
err |= NeuronCompilation_setPriority(compilation, NEURON_PRIORITY_HIGH);
CHECK_NO_ERROR(err);
err = NeuronCompilation_finish(compilation);
CHECK_NO_ERROR(err);
// ---------------------------Execution------------------------------------
// Create Neuron executor instance.
err = NeuronExecution_create(compilation, &execution);
CHECK_NO_ERROR(err);
mExecution = std::unique_ptr<NeuronExecution, NeuronDeleter>(execution);
return NEURON_NO_ERROR;
}
} // namespace neuron
} // namespace backends
} // namespace executorch