-
Notifications
You must be signed in to change notification settings - Fork 506
/
Copy pathcustom_ops_lib.py
235 lines (194 loc) · 6.67 KB
/
custom_ops_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import torch.library
namespace = "et_vk"
lib = torch.library.Library(namespace, "DEF")
#############
## prepack ##
#############
def prepack_impl(x: torch.Tensor):
return x
name = "prepack"
lib.define(f"{name}(Tensor x) -> Tensor")
lib.impl(name, prepack_impl, "CompositeExplicitAutograd")
prepack_op = getattr(getattr(torch.ops, namespace), name)
#####################
## conv_with_clamp ##
#####################
def conv_with_clamp_impl(
input,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
transposed=False,
output_padding=0,
groups=1,
output_min=-float("inf"),
output_max=float("inf"),
):
return torch.clamp(
torch.convolution(
input,
weight,
bias,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
),
output_min,
output_max,
)
name = "conv_with_clamp"
lib.define(
f"{name}(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, Scalar? output_min, Scalar? output_max) -> Tensor"
)
lib.impl(name, conv_with_clamp_impl, "CompositeExplicitAutograd")
conv_with_clamp_op = getattr(getattr(torch.ops, namespace), name)
#########################
## conv_with_clamp.out ##
#########################
def conv_with_clamp_out_impl(
input,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
transposed=False,
output_padding=0,
groups=1,
output_min=-float("inf"),
output_max=float("inf"),
out=None,
):
out = conv_with_clamp_impl(
input,
weight,
bias,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
output_min,
output_max,
)
return out
name = "conv_with_clamp.out"
lib.define(
f"{name}(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, Scalar? output_min, Scalar? output_max, *, Tensor(a!) out) -> Tensor(a!)"
)
lib.impl(name, conv_with_clamp_out_impl, "CompositeExplicitAutograd")
#################
## grid_priors ##
#################
# The dimension of x should be larger than 1
def grid_priors_impl(
x,
stride,
offset,
):
height, width = x.shape[-2:]
# Need to specify device of torch.arange to avoid executorch exporting error
shift_x = (torch.arange(0, width, device=x.device) + offset) * stride
shift_y = (torch.arange(0, height, device=x.device) + offset) * stride
# Need to specify indexing parameter ('ij' is the default value) to avoid executorch exporting error
shift_xx, shift_yy = torch.meshgrid([shift_y, shift_x], indexing="ij")
shift_xx = shift_xx.reshape(-1)
shift_yy = shift_yy.reshape(-1)
shifts = torch.stack((shift_yy, shift_xx), dim=-1)
return shifts
name = "grid_priors"
lib.define(f"{name}(Tensor self, int stride, float offset) -> Tensor")
lib.impl(name, grid_priors_impl, "CompositeExplicitAutograd")
grid_priors_op = getattr(getattr(torch.ops, namespace), name)
# When lowering to executorch, ops are converted from default to out variant. Hence, custom ops define both variants.
def grid_priors_out_impl(
x,
stride,
offset,
out,
):
out = grid_priors_impl(x, stride, offset)
return out
name = "grid_priors_out"
lib.define(
f"{name}(Tensor self, int stride, float offset, *, Tensor(a!) out) -> Tensor(a!)"
)
lib.impl(name, grid_priors_out_impl, "CompositeExplicitAutograd")
########################
## linear_weight_int4 ##
########################
def linear_weight_int4_impl(
x: torch.Tensor,
weights_4x8: torch.Tensor,
groupsize: int,
scales_and_zeros: torch.Tensor,
inner_k_tiles: int,
):
original_x_size = x.size()
out_features = weights_4x8.size(0)
x = x.reshape(-1, original_x_size[-1])
weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(
weights_4x8, inner_k_tiles
)
out = torch.ops.aten._weight_int4pack_mm(
x, weight_int4pack, groupsize, scales_and_zeros
)
out_shape = original_x_size[:-1] + (out_features,)
return out.reshape(out_shape)
name = "linear_weight_int4"
lib.define(
f"{name}(Tensor self, Tensor mat2, int qGroupSize, Tensor qScaleAndZeros, int inner_k_tiles) -> Tensor"
)
lib.impl(name, linear_weight_int4_impl, "CompositeExplicitAutograd")
linear_weight_int4_op = getattr(getattr(torch.ops, namespace), name)
######################
## apply_rotary_emb ##
######################
# Note that this implementation is copied from executorch.examples.models.llama.rope
# but it is copied here to avoid introducing a dependency on the llama code.
def apply_rotary_emb_impl(
xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor
):
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
freqs_cis_ndim = freqs_cis.ndim
if freqs_cis_ndim == 3:
# freqs_cis: (seq_len, n_heads, head_dim // 2)
assert freqs_cis.shape == (x.shape[-3], x.shape[-2], x.shape[-1])
shape = [
d if (i == ndim - 3 or i == ndim - 2 or i == ndim - 1) else 1
for i, d in enumerate(x.shape)
]
else:
# freqs_cis: (seq_len, head_dim // 2)
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(shape)
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
name = "apply_rotary_emb"
lib.define(
f"{name}(Tensor xq, Tensor xk, Tensor freqs_cos, Tensor freqs_sin) -> (Tensor, Tensor)"
)
lib.impl(name, apply_rotary_emb_impl, "CompositeExplicitAutograd")
apply_rotary_emb_op = getattr(getattr(torch.ops, namespace), name)