-
Notifications
You must be signed in to change notification settings - Fork 509
/
Copy pathfbnet.py
executable file
·139 lines (118 loc) · 3.88 KB
/
fbnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) Qualcomm Innovation Center, Inc.
# All rights reserved
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import re
from multiprocessing.connection import Client
import numpy as np
import timm
from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype
from executorch.examples.qualcomm.utils import (
build_executorch_binary,
get_imagenet_dataset,
make_output_dir,
setup_common_args_and_variables,
SimpleADB,
topk_accuracy,
)
def main(args):
if not args.compile_only and args.device is None:
raise RuntimeError(
"device serial is required if not compile only. "
"Please specify a device serial by -s/--device argument."
)
# ensure the working directory exist.
os.makedirs(args.artifact, exist_ok=True)
instance = timm.create_model("fbnetc_100", pretrained=True).eval()
data_num = 100
inputs, targets, input_list = get_imagenet_dataset(
dataset_path=f"{args.dataset}",
data_size=data_num,
image_shape=(299, 299),
)
pte_filename = "fbnet"
build_executorch_binary(
instance,
inputs[0],
args.model,
f"{args.artifact}/{pte_filename}",
inputs,
quant_dtype=QuantDtype.use_8a8w,
shared_buffer=args.shared_buffer,
)
if args.compile_only:
return
adb = SimpleADB(
qnn_sdk=os.getenv("QNN_SDK_ROOT"),
build_path=f"{args.build_folder}",
pte_path=f"{args.artifact}/{pte_filename}.pte",
workspace=f"/data/local/tmp/executorch/{pte_filename}",
device_id=args.device,
host_id=args.host,
soc_model=args.model,
)
adb.push(inputs=inputs, input_list=input_list)
adb.execute()
# collect output data
output_data_folder = f"{args.artifact}/outputs"
make_output_dir(output_data_folder)
output_raws = []
def post_process():
for f in sorted(
os.listdir(output_data_folder), key=lambda f: int(f.split("_")[1])
):
filename = os.path.join(output_data_folder, f)
if re.match(r"^output_[0-9]+_[1-9].raw$", f):
os.remove(filename)
else:
output = np.fromfile(filename, dtype=np.float32)
output_raws.append(output)
adb.pull(output_path=args.artifact, callback=post_process)
# top-k analysis
predictions = []
for i in range(data_num):
predictions.append(
np.fromfile(
os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.float32
)
)
k_val = [1, 5]
topk = [topk_accuracy(predictions, targets, k).item() for k in k_val]
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(json.dumps({f"top_{k}": topk[i] for i, k in enumerate(k_val)}))
else:
for i, k in enumerate(k_val):
print(f"top_{k}->{topk[i]}%")
if __name__ == "__main__":
parser = setup_common_args_and_variables()
parser.add_argument(
"-a",
"--artifact",
help="path for storing generated artifacts by this example. Default ./fbnet",
default="./fbnet",
type=str,
)
parser.add_argument(
"-d",
"--dataset",
help=(
"path to the validation folder of ImageNet dataset. "
"e.g. --dataset imagenet-mini/val "
"for https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000)"
),
type=str,
required=True,
)
args = parser.parse_args()
try:
main(args)
except Exception as e:
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(json.dumps({"Error": str(e)}))
else:
raise Exception(e)